Abstract:
A compressor has: a rotor and a shroud having a internal and external sides and an air outlet; an annular case mounted to the external side and enclosing a plenum, the annular case having inner and outer sides and defining an aperture; a valve mounted to the annular case at the aperture and having: a support secured to the annular case and defining a seat surrounding a bleed passage, the seat located on the outer side, the support defining a guiding aperture, and a valve member having a head and a stem slidably received within the guiding aperture, the valve member having a closed position and an open position, the head abutting the valve seat in the closed position and offset from the valve seat in the open position; and an actuator engaged to the valve member for moving the valve member between the closed position and the open position.
Abstract:
An aircraft engine, has: a high-pressure spool having a high-pressure turbine drivingly engaged to a high-pressure compressor; and a low-pressure spool having: a first low-pressure turbine downstream of the high-pressure turbine; and a second low-pressure turbine downstream of the first low-pressure turbine, one or more of the first low-pressure turbine and the second low-pressure turbine drivingly engaged to a rotatable load, the first low-pressure turbine and the second low-pressure turbine radially offset from one another relative to a central axis of the aircraft engine.
Abstract:
Systems and methods for delivering a buffer fluid to a shaft seal of a gas turbine engine are provided. An exemplary system includes, a buffer fluid source, one or more first conduits providing fluid communication between the buffer fluid source and the shaft seal along a first route, and one or more second conduits providing fluid communication between the buffer fluid source and the shaft seal along a second route different from the first route. A heat exchanger is also disposed along the first route to facilitate heat transfer between buffer fluid in the one or more first conduits and a cooling fluid.
Abstract:
A variable guide vane control system comprises an actuator and a rolling contact joint. The joint includes a drive ring rotatable about a drive axis and at least one roller rotatable about a roller axis parallel to the drive axis and drivingly connectable to a vane. A first flexible member and a second flexible member connect the drive ring and the roller to one another. The first flexible member and the second flexible member are respectively tensioned when the drive ring rotates about the drive axis in a first direction and in a second direction opposite the first direction.
Abstract:
A method of manufacturing a bearing support structure of a gas turbine engine, includes: obtaining a bearing support and a casing assembly, the casing assembly having first and second casings extending around a central axis and connected together via struts, the bearing support securable to the first casing at attachment points; selecting a distance between the attachment points of the bearing support and the struts as a function of a required stiffness of the bearing support structure; and adjusting a position of the bearing support relative to the casing assembly until the attachment points are distanced from the struts by the selected distance and joining the bearing support to the casing assembly at the attachment points.
Abstract:
An active tip clearance control system of a gas turbine engine and an associated method are disclosed. The system comprises a Coanda effect fluidic device configured to control a flow of clearance control fluid to a turbine section of the gas turbine engine for active tip clearance control.
Abstract:
An auxiliary power unit for an aircraft includes a rotary intermittent internal combustion engine drivingly engaged to an engine shaft, a turbine section having an inlet in fluid communication with an outlet of the engine(s), the turbine section including at least one turbine compounded with the engine shaft, and a compressor having an inlet in fluid communication with an environment of the aircraft and an outlet in fluid communication with a bleed duct for providing bleed air to the aircraft, the compressor having a compressor rotor connected to a compressor shaft, the compressor shaft drivingly engaged to the engine shaft. The driving engagement between the compressor shaft and the engine shaft is configurable to provide at least two alternate speed ratios between the compressor shaft and the engine shaft.
Abstract:
A variable vane assembly for a gas turbine engine compressor and method of manufacturing same is described. A plurality of projections the inner and/or outer shroud which protruded into the annular gas path such as to ensure that a radial clearance gap, defined between the projections and a vane airfoil overhang portion, remains substantially constant throughout a substantial portion of the vane pivot arc of the variable vane. The method includes forming one cavities within the shroud, the cavities isolated from the annular gas path and disposed radially beneath at least each of the projections, and providing one or more structural reinforcing elements within the cavities.
Abstract:
A method of assembling an electromechanical device in a gas-turbine engine, including mounting a rotor of the device on a rotor support, securing a stator of the device to a stator support, coupling the rotor support to the stator support such that said rotor is rotatable about said stator, securing the device to a bearing support, securing a bearing assembly on the low pressure shaft, coupling the device to the low pressure shaft by installing the bearing support over the bearing assembly, and drivingly engaging the rotor support to the high pressure shaft.
Abstract:
An engine system is provided that includes an engine rotating structure, an electric machine rotating structure and a flex coupler. The flex coupler rotatably connects the electric machine rotating structure to the engine rotating structure. The flex coupler includes a first mount, a second mount and a flex plate. The first mount includes a plurality of first mount fingers arranged circumferentially about an axis. The second mount includes a plurality of second mount fingers arranged circumferentially about the axis. The flex plate connects the first mount to the second mount. The flex plate includes a plurality of first flex plate fingers and a plurality of second flex plate fingers. Each of the first flex plate fingers is attached to a respective one of the first mount fingers. Each of the second flex plate fingers is attached to a respective one of the second mount fingers.