Abstract:
Urethane-containing prepolymers formed from diisocyanates and adapted for Michael addition curing chemistries and compositions thereof for use in sealant applications are disclosed. The prepolymers provide compositions that exhibit room temperature stability and a controlled curing rate following a brief activation.
Abstract:
The use of Michael addition curing chemistries in compositions comprising sulfur-containing polymers such as polythioethers and polysulfides useful in aerospace sealant applications are disclosed. Sulfur-containing adducts comprising terminal Michael acceptor groups are also disclosed. In particular, sulfur-containing polymers and sulfur containing Michael acceptor adducts having terminal 1-(ethylenesulfonyl)-n-(vinylsulfonyl)alkanol groups are disclosed.
Abstract:
Sulfur-containing polyurea compositions comprising a polyisocyanate and a polyamine are disclosed. The polyisocyanate comprises the reaction product of reactants comprising a diisocyanate having isocyanate groups with different reactivities toward thiol groups, and a thiol-terminated sulfur-containing polymer such as a thiol-terminated polythioether polymer and/or a thiol-terminated polyformal polymer. The polyamine can be an aromatic polyamine and/or an aromatic amine-terminated polythioether adduct. The sulfur-containing polyurea compositions are useful as aerospace sealants.
Abstract:
Disclosed are polyurea compositions comprising the reaction products of a polyformal-isocyanate prepolymer and a curing agent comprising an amine. The compositions are useful as sealants in aerospace applications.
Abstract:
The use of Michael addition curing chemistries in compositions comprising sulfur-containing polymers such as polythioethers and polysulfides useful in aerospace sealant applications are disclosed. Sulfur-containing adducts comprising terminal Michael acceptor groups are also disclosed.
Abstract:
Disclosed are multifunctional sulfur-containing polymers that are the reaction products of a sulfur-containing diol, a polyol containing at least three hydroxyl groups per polyol molecule, and an aldehyde, a ketone, or a combination thereof. Sealant compositions comprising the multifunctional sulfur-containing polymers are also disclosed.
Abstract:
Disclosed are multifunctional sulfur-containing polymers that are the reaction products of a sulfur-containing diol, a polyol containing at least three hydroxyl groups per polyol molecule, and an aldehyde, a ketone, or a combination thereof. Sealant compositions comprising the multifunctional sulfur-containing polymers are also disclosed.
Abstract:
Michael addition curing chemistries in compositions comprising sulfur-containing polymers such as polythioethers and polysulfides are useful in aerospace sealant applications. Compositions employing Michael addition curing chemistries include sulfur-containing adducts comprising terminal Michael acceptor groups. In particular, the sulfur-containing adducts include terminal 1-(ethylenesulfonyl)-n-(vinylsulfonyl)alkanol groups.
Abstract:
Disclosed are multifunctional sulfur-containing polymers that are the reaction products of a sulfur-containing diol, a polyol containing at least three hydroxyl groups per polyol molecule, and an aldehyde, a ketone, or a combination thereof. Sealant compositions comprising the multifunctional sulfur-containing polymers are also disclosed.
Abstract:
The use of Michael addition curing chemistries in compositions comprising sulfur-containing polymers such as polythioethers and polysulfides useful in aerospace sealant applications are disclosed. Sulfur-containing adducts comprising terminal Michael acceptor groups are also disclosed.