摘要:
The invention relates to a method of manufacturing a semiconductor device (10) comprising a substrate (11) and a semiconductor body (12) in which at least one semiconductor element (1) is formed, wherein on the substrate (11) a semiconductor layer (2) is formed comprising a mixed crystal of silicon and germanium, further called the silicon-germanium layer (2) and having a lower surface close to the substrate (11) and an upper surface more remote from the substrate (11), and wherein the silicon-germanium layer (2) is subjected to an oxidizing treatment at a surface of the silicon-germanium layer (2) while the other surface of the silicon-germanium layer (2) is protected against the oxidizing treatment by a blocking layer (3). According to the invention, the blocking layer (3) is formed on the upper surface of the silicon-germanium layer (2), a cavity (5) is formed in the semiconductor body below the silicon-germanium layer (2) and the lower surface of the silicon-germanium layer (2) is subjected to the oxidizing treatment through the cavity (2). In this way, a device 10 may be obtained in which the surface of the silicon-germanium layer (2) after the oxidizing treatment does not suffer from roughening and/or germanium pile up. This enables e.g. to manufacture in particular a MOSFET on top of or in the silicon-germanium layer (2) with excellent properties and high yield.
摘要:
The invention relates to a semiconductor device (10) with a substrate (11) and a semiconductor body (12) of silicon which comprises an active region (A) with a transistor (T) and a passive region (P) surrounding the active region (A) and which is provided with a buried conducting region (1) of a metallic material that is connected to a conductive region (2) of a metallic material sunken from the surface of the semiconductor body (12), by which the buried conductive region (1) is made electrically connectable at the surface of the semiconductor body (12). According to the invention, the buried conducting region (1) is made at the location of the active region (A) of the semiconductor body (12). In this way, a very low buried resistance can be locally created in the active region (A) in the semiconductor body (12), using a metallic material that has completely different crystallographic properties from the surrounding silicon. This is made possible by using a method according to the invention. Such a buried low resistance offers substantial advantages both for a bipolar transistor and for a MOS transistor.
摘要:
The invention relates to a semiconductor device (10) with a substrate (11) and a semiconductor body (12) of silicon which comprises an active region (A) with a transistor (T) and a passive region (P) surrounding the active region (A) and which is provided with a buried conducting region (1) of a metallic material that is connected to a conductive region (2) of a metallic material sunken from the surface of the semiconductor body (12), by which the buried conductive region (1) is made electrically connectable at the surface of the semiconductor body (12). According to the invention, the buried conducting region (1) is made at the location of the active region (A) of the semiconductor body (12). In this way, a very low buried resistance can be locally created in the active region (A) in the semiconductor body (12), using a metallic material that has completely different crystallographic properties from the surrounding silicon. This is made possible by using a method according to the invention. Such a buried low resistance offers substantial advantages both for a bipolar transistor and for a MOS transistor.
摘要:
The invention relates to a method of manufacturing a semiconductor device (10) comprising a substrate (11) and a semiconductor body (12) in which at least one semiconductor element (1) is formed, wherein on the substrate (11) a semiconductor layer (2) is formed comprising a mixed crystal of silicon and germanium, further called the silicon-germanium layer (2) and having a lower surface close to the substrate (11) and an upper surface more remote from the substrate (11), and wherein the silicon-germanium layer (2) is subjected to an oxidizing treatment at a surface of the silicon-germanium layer (2) while the other surface of the silicon-germanium layer (2) is protected against the oxidizing treatment by a blocking layer (3). According to the invention, the blocking layer (3) is formed on the upper surface of the silicon-germanium layer (2), a cavity (5) is formed in the semiconductor body below the silicon-germanium layer (2) and the lower surface of the silicon-germanium layer (2) is subjected to the oxidizing treatment through the cavity (2). In this way, a device 10 may be obtained in which the surface of the silicon-germanium layer (2) after the oxidizing treatment does not suffer from roughening and/or germanium pile up. This enables e.g. to manufacture in particular a MOSFET on top of or in the silicon-germanium layer (2) with excellent properties and high yield.
摘要:
A method of manufacturing a structure (1100), the method comprising forming a cap element (401) on a substrate (101), removing material (103) of the substrate (101) below the cap element (401) to thereby form a gap (802) between the cap element (401) and the substrate (101), and rearranging material of the cap element (401) and/or of the substrate (101) to thereby merge the cap element (401) and the substrate (101) to bridge the gap (802).
摘要:
A method of forming a heterojunction bipolar transistor by depositing a first stack comprising an polysilicon layer and a sacrificial layer on a mono-crystalline silicon substrate surface; patterning that stack to form a trench extending to the substrate; depositing a silicon layer over the resultant structure; depositing a silicon-germanium-carbon layer over the resultant structure; selectively removing the silicon-germanium-carbon layer from the sidewalls of the trench; depositing a boron-doped silicon-germanium-carbon layer over the resultant structure; depositing a further silicon-germanium-carbon layer over the resultant structure; depositing a boron-doped further silicon layer over the resultant structure; forming dielectric spacers on the trench sidewalls; filling the trench with emitter material; exposing polysilicon regions outside the trench side walls by selectively removing the sacrificial layer; implanting boron impurities into the exposed polysilicon regions to define base implants; and exposing the resultant structure to a thermal budget for annealing the boron impurities.
摘要:
A method of manufacturing a MEMS device comprises forming a MEMS device element (14). A sacrificial layer (20) is provided over the device element and a package cover layer (22) is provided over the sacrificial layer. The sacrificial layer is removed using at least one opening (22) in the cover layer and the at least one opening (24) is sealed by an anneal process.
摘要:
A semiconductor device (10) comprising a bipolar transistor and a field effect transistor within a semiconductor body (1) comprising a projecting mesa (5) within which are at least a portion of a collector region (22d and 22e) and a base region (33d) of the bipolar transistor. The bipolar transistor is provided with a first insulating cavity (92) provided in the collector region (22d and 22e). The base region (33d) is narrower in the plane of the substrate than the collector region (22d and 22e) due to a second insulating cavity (94) provided around the base region (33d) and between the collector region (22d and 22e) and the emitter region (4). By blocking diffusion from the base region the first insulating cavity (92) provides a reduction in the base collector capacitance and can be described as defining the base contact.
摘要:
A method of manufacturing a structure (1100), the method comprising forming a cap element (401) on a substrate (101), removing material (103) of the substrate (101) below the cap element (401) to thereby form a gap (802) between the cap element (401) and the substrate (101), and rearranging material of the cap element (401) and/or of the substrate (101) to thereby merge the cap element (401) and the substrate (101) to bridge the gap (802).
摘要:
Consistent with an example embodiment, a reduced surface field effect type (RESURF) semiconductor device is manufactured having a drift region over a drain region. Trenches are formed through openings in mask. A trench insulating layer is deposited on the sidewalls and base of the trenches followed by an overetching step to remove the trench insulating layer from the base of the trenches as well as the top of the sidewalls of the trenches adjacent to the first major surface leaving exposed silicon at the top of the sidewalls of the trench and the base of the trenches. Silicon is selectively grown plugging the trenches with silicon plug (18) leaving void.