Abstract:
Techniques for channel selection and related operations in a shared spectrum environment are disclosed. In one example, a channel selector or the like may be used to select one of a number of available channels as an operating channel based on a comparison of cost functions for each of the available channels, with the cost functions being based on separate utility and penalty metrics. In another example, a channel scanner or the like may be used to trigger a channel scan in response to a channel quality metric indicating poor service for a threshold number or proportion of access terminals. In another example, an operating mode controller may be used to trigger a Time Division Multiplexing (TDM) mode on an operating channel in response to a utilization metric being above a threshold. The TDM mode may cycle operation between activated and deactivated periods in accordance with a TDM communication pattern.
Abstract:
Techniques for managing channel reservation on a shared communication medium are disclosed. An access point or an access terminal contending for access to a communication medium shared between a first Radio Access Technology (RAT) and a second RAT, for example, may encode a first portion of a channel reservation message defined by the first RAT with a transmission opportunity duration associated with the second RAT and also encode a second portion of the channel reservation message with the transmission opportunity duration. The access point or the access terminal may then transmit, over the communication medium, the channel reservation message including the first and second portions to reserve the communication medium based on the contending.
Abstract:
Systems and methods for improved interference management by Wi-Fi devices are disclosed. The interference management may be achieved by monitoring, by the Wi-Fi device, signaling energy on a communication channel in a frequency band associated with the Wi-Fi device, comparing the monitored signal energy with a known waveform signature corresponding to Long Term Evolution (LTE) operation, and identifying a presence of an LTE interferer on the communication channel in the frequency band associated with the Wi-Fi device based on the comparison.
Abstract:
Techniques for synchronization on a shared communication medium are disclosed. An access point may select, for example, a common sequence, frequency, and time for a first synchronization signal that is coordinated with one or more other access points. The access point may then transmit the first synchronization signal in accordance with the common sequence, frequency, and time. An access terminal may receive, from an access point, a first synchronization signal having a first sequence and a second synchronization signal having a second sequence. The access terminal may then determine an offset in time between the first synchronization signal and the second synchronization signal, and determine a cell identifier group associated with the access point based on the offset.
Abstract:
A base station includes a base unit and a plurality of remote antenna units (RAUs). Each of the RAUs includes a physical layer circuit (PHY). The PHYs are configured to each use the same physical layer identifier, but each PHY includes its own hardware for supporting users in the coverage area of that PHY. The base unit controls resource allocation for the RAUs to increase the capacity of the base station and/or reduce interference between PHYs.
Abstract:
Systems and methods for improved interference management by Wi-Fi devices are disclosed. The interference management may be achieved by monitoring, by the Wi-Fi device, signaling energy on a communication channel in a frequency band associated with the Wi-Fi device, comparing the monitored signal energy with a known waveform signature corresponding to Long Term Evolution (LTE) operation, and identifying a presence of an LTE interferer on the communication channel in the frequency band associated with the Wi-Fi device based on the comparison.
Abstract:
Techniques for co-existence between wireless Radio Access Technologies (RATs) are disclosed. During an active period of a Discontinuous Transmission (DTX) communication pattern, a first signal may be transmitted during a first subframe and a second signal may be transmitted during a second subframe, while during an inactive period the first signal may be transmitted during the first subframe and the second signal may be omitted during the second subframe. Retransmission of one or more packets may take place over a subset of less than all retransmission opportunities based on the DTX communication pattern. A Secondary Cell (SCell) may be reconfigured as the Primary Cell (PCell) and the PCell may be reconfigured as the SCell for one or more access terminals based on a load balancing condition or a channel selection condition.
Abstract:
Techniques for managing operation over a communication medium shared between Radio Access Technologies (RATs) are disclosed. In one example, one or more parameters of a Time Division Multiplexed (TDM) communication pattern may be set based on a utilization metric and a beacon schedule. In another example, subframe puncturing on the medium may be scheduled based on the beacon schedule.
Abstract:
Techniques for managing re-contention on a shared communication medium are disclosed. In order to facilitate re-contending for access to the communication medium, an access point may adjust one or more uplink transmission parameters associated with a triggering condition for invoking a contention timer. In addition or as an alternative, the access point may mute transmission on the communication medium during one or more symbol periods designated for transmission. In addition or as an alternative, the access point may configure a timing advance to create a re-contention gap.
Abstract:
Techniques for managing operation over a communication medium shared between Radio Access Technologies (RATs) are disclosed. In one example, one or more parameters of a Time Division Multiplexing (TDM) communication pattern may be set to define activated periods and deactivated periods for communication over the medium. A first interlace may be selected among a plurality of interlaces for communication over the medium, the first interlace being reserved for a first operator. During the first interlace, transmission over the medium may be cycled in accordance with the TDM communication pattern, and deactivated during a second interlace among the plurality of interlaces that is reserved for a second operator.