Abstract:
A mirror system including a primary mirror, and a secondary mirror with different coefficients of thermal expansion. A negative CTE strut can include a main body portion, a first coupling portion and a second coupling portion disposed opposite one another about the main body portion and defining a strut length. The first and second coupling portions can each interface with an external structure. The negative CTE strut can include an offsetting extension member having a first end coupled to the main body portion and a second end coupled to the first coupling portion by an intermediate extension member. The first and second ends can define an offset length parallel to the strut length. When the negative CTE strut increases in temperature, the offset length can be configured to increase due to thermal expansion of the offsetting extension member sufficient to cause the strut length to decrease.
Abstract:
A multi-mode imaging spectrometer that incorporates two orthogonally positioned entrance slits and is configurable between a first mode in which the system produces images of relatively wide spatial coverage with moderate spectral resolution, using a first one of the two slits, and a second mode in which the system produces images of a smaller spatial area with fine spectral resolution, using the other one of the two slits.
Abstract:
A laser relay module in a free space optical communication network includes: a beacon source for generating an optical beacon signal for aligning a communication channel of a source optical node to a communication channel of a receiving optical node; a beacon inserter for encoding the optical beacon signal with switching information; a telescope for transmitting the encoded optical beacon signal to the receiving optical node; a beacon detector for detecting received switching information from the modulated optical beacon signal, wherein the receiving optical node uses the encoded optical beacon signal to align communication channel of the receiving optical node with communication channel of the source optical node; and a processor for using the detected switching information to change configuration of an optical switch matrix to direct received data to a next optical node in the free space optical communication network.
Abstract:
A methodology for initial orbit determination of an object about an astronomical body searches a grid of possible boundary values on the range-to-object over the observation interval to find the grid point and corresponding initial orbit that best fits all of the three or more (N) angles-only observations according to an error metric. The search is conducted by solving a boundary-value problem (e.g. Lambert's Problem) for different grid points. The state vector is propagated to determine estimated observation directions for the remaining N−2 observations. The grid point (and initial orbit) that best fit all of the observations is selected. The grid may be searched by testing each and every point on the grid or by using other optimization techniques such as hill climbing algorithms to find the optimal grid point. For efficiency, the search may start with a broad but coarse initial grid and increase the resolution of the grid as the search converges to a solution.
Abstract:
Described are methods and systems for vicarious polarimetric calibration and performance validation of a remote sensor. The system includes a plurality of reflective mirrors configured and arranged to reflect radiation from a source of radiation onto the remote sensor with accurately known polarimetric properties. Each of the reflective mirrors are located so that the target images do not overlap. The remote sensor is configured to receive the radiation reflected from the plurality of reflective mirrors and store the received radiation as image data (e.g., the image of each mirror appears as a point target). The system includes a processor configured to process the received data to provide direct calibration and performance validation for each polarimetric or spectral channel of the remote sensor. In addition, the calibration method removes all atmospheric effects except for transmittance and provides reference targets that have high polarimetric contrast, full spectrum performance and easy to deploy.
Abstract:
Aspects and embodiments are generally directed to modular imaging spectrometer assemblies and methods of operation thereof. In one example, a modular imaging spectrometer assembly includes foreoptics to receive electromagnetic radiation and produce a real exit pupil, the foreoptics having a first f-number, a first imaging spectrometer to receive and disperse the electromagnetic radiation into a first plurality of spectral bands at a first image plane, the first imaging spectrometer having a second f-number independent of the first f-number, a second imaging spectrometer separated from the first imaging spectrometer, the second imaging spectrometer to receive and disperse the electromagnetic radiation into a second plurality of spectral bands, the second imaging spectrometer having a third f-number independent of the first f-number, and at least one slit aperture positioned to receive the electromagnetic radiation from the real exit pupil and direct the electromagnetic radiation to the first and second imaging spectrometers.
Abstract:
An imaging spectrometer and method are provided. In one example, the imaging spectrometer includes foreoptics positioned to receive electromagnetic radiation from a scene, a diffraction grating positioned to receive the electromagnetic radiation from the foreoptics and configured to disperse the electromagnetic radiation into a plurality of spectral bands, each spectral band corresponding to a diffraction grating order of the diffraction grating, and a single-band focal plane array configured to simultaneously receive from the diffraction grating overlapping spectra corresponding to at least two diffraction grating orders.
Abstract:
Device and method for optically switching a plurality of optical input signals include: receiving the plurality of optical input signals, wherein one or more of the optical input signals represent multiple channels at different channel frequencies; collimating the received plurality of optical input signals; removing noise between the channels by a comb filter; dispersing the collimated optical signals so that signals of different wavelength are separated by different angles; focusing the optical signals separated by different angles on a light switch device having a plurality of micromirrors; and controlling the light switch by a control signal to direct one or more of the optical signals separated by different angles to one or more output fibers for multicasting of the optical input signals.
Abstract:
A free space line of site communication system for communicating between a first destination and a second destination includes a constellation of airborne platforms in a train-like formation, each travelling at a constant speed and distance relative to each other. Each of the airborne platforms includes: one or more inter-airborne platform optical or RF transceivers for communication with a previous and a next neighboring airborne platforms, wherein each inter-airborne platform transceiver is capable of adjusting its velocity to keep a constant speed and distance relative to its neighboring airborne platforms, and one or more up/down link transceivers for communication with multiple ground sites, each ground site having two or more ground optical or RF transceivers. A first airborne platforms closest to the first destination communicates with the first destination and a second airborne platforms closest to the second destination communicates with the second destination.
Abstract:
One embodiment disclosed is a spectrometry system for collecting spatially and temporally co-registered hyperspectral data covering multiple spectral bands. The spectrometry system includes a single entrance slit for receiving light and a plurality of disperser elements operating over a plurality of distinct spectral bands to disperse the received light into constituent spectral channels. The system also includes a plurality of collimating and imaging optic elements that receive and re-image the dispersed light. The system also includes at least two focal plane arrays affixed in a common plane and configured to receive the re-imaged dispersed light, each of the at least two focal plane arrays being dedicated to sensing a distinct spectral band of the dispersed light.