Abstract:
A connector is provided and includes one or more radio frequency (RF) signal pins, ground pins arranged in a ring-shape around the one or more RF signal pins, a ground pin supporting mold formed about the ground pins and defining a borehole around the one or more RF signal pins and a dielectric mold formed in the borehole about the one or more RF signal pins and about the ground pin supporting mold.
Abstract:
An HPA MMIC assembly includes a MMIC device coupled to a thermal spreader. A ground plane is provided on the thermal spreader and coupled to FETs in the MMIC device. The multiple levels of metal separated by multiple dielectric layers provide low-loss broad-band microstrip circuits. The thermal spreader may include diamond, an air/wire-edm spreader or a multi-layer board (MLB) with heat sink vias and ground vias.
Abstract:
A free-from radio frequency (RF) media includes a substrate having a first dielectric layer formed thereon and a second dielectric layer on an upper surface of the first dielectric layer. A first conductive layer is formed on an upper surface of the first dielectric layer and has a first overall profile. A second conductive layer having a second overall profile is formed on an upper surface of the second dielectric layer such that the second dielectric layer is interposed between the first and second conductive layers. The first overall profile of the first conductive layer is different from the second overall profile of the second conductive layer.
Abstract:
An HPA MMIC assembly includes a MMIC device coupled to a thermal spreader. A ground plane is provided on the thermal spreader and coupled to FETs in the MMIC device. The multiple levels of metal separated by multiple dielectric layers provide low-loss broad-band microstrip circuits. The thermal spreader may include diamond, an air/wire-edm spreader or a multi-layer board (MLB) with heat sink vias and ground vias.
Abstract:
Systems and methods for providing high-capacitive RF MEMS switches are provided. In one embodiment, the invention relates to a micro-electro-mechanical switch assembly including a substrate, an electrode disposed on a portion of the substrate, a dielectric layer disposed on at least a portion of the electrode, a metal layer disposed on at least a portion of the dielectric layer, and a flexible membrane having first and second ends supported at spaced locations on the substrate base, where the flexible membrane is configured to move from a default position to an actuated position in response to a preselected switching voltage applied between the flexible membrane and the electrode, and where, in the actuated position, the flexible membrane is in electrical contact with the metal layer.
Abstract:
A free-from radio frequency (RF) media includes a substrate having a first dielectric layer formed thereon and a second dielectric layer on an upper surface of the first dielectric layer. A first conductive layer is formed on an upper surface of the first dielectric layer and has a first overall profile. A second conductive layer having a second overall profile is formed on an upper surface of the second dielectric layer such that the second dielectric layer is interposed between the first and second conductive layers. The first overall profile of the first conductive layer is different from the second overall profile of the second conductive layer.
Abstract:
A balun includes: a balanced port; an unbalanced port; and a double-y junction portion between the balanced port and the unbalanced port, the double-y junction portion including: a balanced y junction portion having first and second balanced stubs; and an unbalanced y junction portion having first and second unbalanced stubs, wherein at least one of the first balanced stub, the second balanced stub, the first unbalanced stub, and the second unbalanced stub includes a switch.
Abstract:
A balun includes: a balanced port; an unbalanced port; and a double-y junction portion between the balanced port and the unbalanced port, the double-y junction portion including: a balanced y junction portion having first and second balanced stubs; and an unbalanced y junction portion having first and second unbalanced stubs, wherein at least one of the first balanced stub, the second balanced stub, the first unbalanced stub, and the second unbalanced stub includes a switch.
Abstract:
Systems and methods for providing high-capacitive RF MEMS switches are provided. In one embodiment, the invention relates to a micro-electro-mechanical switch assembly including a substrate, an electrode disposed on a portion of the substrate, a dielectric layer disposed on at least a portion of the electrode, a metal layer disposed on at least a portion of the dielectric layer, and a flexible membrane having first and second ends supported at spaced locations on the substrate base, where the flexible membrane is configured to move from a default position to an actuated position in response to a preselected switching voltage applied between the flexible membrane and the electrode, and where, in the actuated position, the flexible membrane is in electrical contact with the metal layer.