Abstract:
Systems and methods of scalable language infrastructure for electronic system level tools. In accordance with embodiments of the present invention, knowledge about types, functions and the like is encapsulated in a plurality of intelligent components called active component extension modules that are external to the infrastructure. The infrastructure implements a communication mechanism between the clients and these intelligent components, and acts as a common backbone. The infrastructure itself does not maintain any knowledge about any client, types, functions, etc. In accordance with a method embodiment of the present invention, a request is received from a client of a language infrastructure. The request is forwarded from the language infrastructure to an active component extension module. The active component extension module performs a service responsive to the request.
Abstract:
Systems and methods of scalable language infrastructure for electronic system level tools. In accordance with embodiments of the present invention, knowledge about types, functions and the like is encapsulated in a plurality of intelligent components called active component extension modules that are external to the infrastructure. The infrastructure implements a communication mechanism between the clients and these intelligent components, and acts as a common backbone. The infrastructure itself does not maintain any knowledge about any client, types, functions, etc. In accordance with a method embodiment of the present invention, a request is received from a client of a language infrastructure. The request is forwarded from the language infrastructure to an active component extension module. The active component extension module performs a service responsive to the request.
Abstract:
Systems and methods of scalable language infrastructure for electronic system level tools. In accordance with embodiments of the present invention, knowledge about types, functions and the like is encapsulated in a plurality of intelligent components called active component extension modules that are external to the infrastructure. The infrastructure implements a communication mechanism between the clients and these intelligent components, and acts as a common backbone. The infrastructure itself does not maintain any knowledge about any client, types, functions, etc. In accordance with a method embodiment of the present invention, a request is received from a client of a language infrastructure. The request is forwarded from the language infrastructure to an active component extension module. The active component extension module performs a service responsive to the request.
Abstract:
Systems and methods of scalable language infrastructure for electronic system level tools. In accordance with embodiments of the present invention, knowledge about types, functions and the like is encapsulated in a plurality of intelligent components called active component extension modules that are external to the infrastructure. The infrastructure implements a communication mechanism between the clients and these intelligent components, and acts as a common backbone. The infrastructure itself does not maintain any knowledge about any client, types, functions, etc. In accordance with a method embodiment of the present invention, a request is received from a client of a language infrastructure. The request is forwarded from the language infrastructure to an active component extension module. The active component extension module performs a service responsive to the request.
Abstract:
Techniques for optimizing data migration are disclosed. In one particular embodiment, the techniques may be realized as a method for optimizing data migration may comprise receiving a request for initiating a data migration application and migrating, via at least one computer processor, at least one data file from a migration list during the data migration application. The method for optimizing data migration may also comprise monitoring the migration of the at least one data file and determining whether the at least one data file is active during the migration of the at least one data file. The method for optimizing data migration may further comprise deferring the migration of the at least one data file based at least in part on a determination that the at least one data file is active and recording information associated with the at least one data file if the at least one data file is active.
Abstract:
A system and method for migrating file systems is provided. A file system migration operation copies a plurality of files from a first file system to a second file system. A request to access one of the files being migrated during the file system migration operation results in the creation of a pseudo vnode for the file being requested in the second file system. The pseudo vnode is created prior to creating a vnode for the file in the second file system. In addition, the pseudo vnode is associated with a vnode of the file at the first file system. Information identifying the pseudo vnode is then returned to the application.