Abstract:
An example method of preserving a modification to an internal state of a computer system includes applying an overlay on a target container. The overlay includes a set of events corresponding to a first set of modifications to a computer system. The method also includes after applying the overlay, receiving a set of user requests corresponding to a second set of modifications to the computer system. The method further includes changing, based on the set of user requests, the third set of internal states of the computer system to the fourth set of internal states. The method also includes removing the overlay from the target container, while preserving the second set of modifications to the computer system.
Abstract:
Media compression in a digital device is described. A method of a disclosure includes monitoring available data storage space in the digital device. The method also includes receiving an indication from a user of the digital device to allow compression of a content stored on the digital device in response to the available data storage space falling below a threshold. The method further includes performing the compression on the content upon receipt of the indication from the user.
Abstract:
Methods, systems, and computer program products are included for executing one or more instructions of a program in a debugging session; receiving a command at a debugger, the command comprising an expression for the debugger to evaluate in the debugging session; evaluating the expression, at least in part by the debugger, the evaluating including attempting to perform a write operation to write a data value to a target; preventing the data value from being written to the target; and outputting, by the debugger, a result of the evaluating.
Abstract:
Mechanisms for transferring data from a source computing device to a target computing device are provided. A filename identifier (ID) that identifies a file stored on the source computing device is presented on a display device. A selection of the filename ID is received. A unique identifier is generated, and association data that associates the unique identifier with the file is generated. The unique identifier is encoded into a coded image. The coded image is presented on the display device. A first file transfer request is received via a communications interface from a target computing device to transfer the file via the communications interface to the target computing device. The first file transfer request includes an identifier. Responsive to receiving the first file transfer request, the file is sent to the target computing device.
Abstract:
A method includes receiving a voice command, determining, by a processing device, a first loudness parameter associated with the voice command, generating a voice response to the voice command, and determining a target loudness parameter associated with the voice response in view of the first loudness parameter associated with the voice command.
Abstract:
A method performed by a computing system includes, with the computing system, providing a user with directions from a current location of the user to a destination, searching a database for a set of points of interest within a predefined distance from a route between the current location and the destination, the searching accounting for a deviation time value associated with each point of interest and a user received allotted time value, the allotted time value indicating a total amount of time the user has allotted for deviation from the route, the deviation time value indicating an estimated amount of time it takes to visit a corresponding point of interest, and presenting to the user, at least one point of interest with the corresponding visitation time value being less than the time deviation value.
Abstract:
A meta-debugger receives a first debugging command from a debugger client to set a breakpoint in a first service in a first language and sets the breakpoint in a first native debugger. After receiving a service message invoking the first service, the breakpoint is triggered and the meta-debugger provides to the debugger client a first graphical representation of the first native debugger. The meta-debugger receives a second debugging command from the debugger client, converts the second debugging command into a third debugging command to provide to the first native debugger. After invoking a second service in a second language, the meta-debugger provides to the debugger client a second graphical representation of the second native debugger. The meta-debugger receives a fourth debugging command from the debugger client, converts the fourth debugging command into a fifth debugging command to provide to the second native debugger.
Abstract:
A mechanism for migrating an application in a process virtual machine environment. A method includes pausing execution of an application in a source process virtual machine (PVM). The method also includes recording a state of the source PVM at a time of the pausing of the execution of the application. The method further includes copying the recorded state of the source PVM into a destination PVM, wherein the destination PVM resumes the execution of the application using the recorded state.
Abstract:
Methods, systems, and computer program for implementing a private cloud are provided. A computer-implemented method may include registering a private cloud in a central registry; retrieving private cloud registration data from the central registry; sharing the private cloud registration data with other users; and allowing other users to connect to the private cloud using the shared private cloud registration data.
Abstract:
An apparatus and a method for sending a message from an enterprise service bus (ESB) is described. A message is formed at an enterprise service bus (ESB) of a computer system. The message is transmitted from the ESB to different ESBs through a User Datagram Protocol (UDP) multicast.