Abstract:
An exchanger conduit permits temperature and/or humidity conditioning of a gas for a patient respiratory interface. In an example embodiment, a conduit has a first channel and a second channel where the first channel is configured to conduct an inspiratory gas and the second channel configured to conduct an expiratory gas. An exchanger is positioned along the first channel and the second channel to separate the first channel and the second channel. The exchanger is configured to transfer a component (e.g., temperature or humidity) of the gas of the second channel to the gas of the first channel. In some embodiments, an optional flow resistor may be implemented to permit venting at pressures above atmospheric pressure so as to allow pressure stenting of a patient respiratory system without a substantial direct flow from a flow generator of respiratory treatment apparatus to the patient during patient expiration.
Abstract:
A mask system includes a mask component including one or more openings for gas washout and a vent component provided to the mask component. The vent component includes one or more tracks or grooves along its outer surface adapted to guide gas washout. The vent component is adapted to cover the one or more openings in the mask component so that gas washout escapes along the one or more tracks or grooves between an outer surface of the mask component and the vent component.
Abstract:
A respiratory apparatus comprising a base and removable chamber, wherein the chamber is configured to hold a supply of water and include a blower arrangement adapted to provide a supply of pressurized air or gas to the supply of water. In certain embodiments the respiratory apparatus includes a split motor, wherein the stationary components are located within a base and the rotating portions are located within a chamber.
Abstract:
A blower assembly including a motor, an impeller and a volute that is configured such that an inlet chamber of the volute and an outlet chamber of the volute are divided from one another by an airtight membrane and the membrane is configured to allow the transmission of pressure waves between the inlet and outlet chambers.
Abstract:
A patient interface for treatment of a user having a respiratory disorder includes a nasal portion having at least one nasal portion aperture adapted to be in communication with a supply of pressurized gas for delivery to at least one nasal opening of the user, and a mouth portion having at least one mouth portion aperture also adapted to be in communication with the supply of pressurized gas to deliver the pressurized gas to an oral cavity of the user's mouth. The at least one mouth portion aperture is separate from the at least one nasal portion aperture, and the patient interface is adapted to limit a flow of the pressurized gas out of the at least one aperture of the mouth portion to be no greater than a flow of the pressurized gas out of the at least one nasal portion aperture.
Abstract:
A blower assembly including a motor, an impeller and a volute that is configured such that an inlet chamber of the volute and an outlet chamber of the volute are divided from one another by an airtight membrane and the membrane is configured to allow the transmission of pressure waves between the inlet and outlet chambers.
Abstract:
A respiratory mask assembly for delivering breathable gas to a patient includes a frame to support one of at least first and second compliant patient interfaces and a forehead support adjustably mounted to the frame. The forehead support is structured and configured to be moved between a first position for use with the first patient interface and a second position relative to the frame for use with a second patient interface, whereby the forehead support maintains a horizontal offset distance with the first and second patient interfaces which is substantially constant.
Abstract:
A mask system for delivering air to a user includes a suspension mechanism to allow relative movement between a face-contacting cushion and a mask shell. The suspension mechanism also provides a predetermined force to the cushion that is a function of mask pressure, displacement of the cushion or both.
Abstract:
An exchanger conduit permits temperature and/or humidity conditioning of a gas for a patient respiratory interface. In an example embodiment, a conduit has a first channel and a second channel where the first channel is configured to conduct an inspiratory gas and the second channel configured to conduct an expiratory gas. An exchanger is positioned along the first channel and the second channel to separate the first channel and the second channel. The exchanger is configured to transfer a component (e.g., temperature or humidity) of the gas of the second channel to the gas of the first channel. In some embodiments, an optional flow resistor may be implemented to permit venting at pressures above atmospheric pressure so as to allow pressure stenting of a patient respiratory system without a substantial direct flow from a flow generator of respiratory treatment apparatus to the patient during patient expiration.
Abstract:
A respiratory mask assembly includes a frame, a forehead support, and an adjustment mechanism including a single finger-operated push button to allow selective adjustment of the forehead support relative to the frame. The frame includes a support arm and a housing provided to a free end of the support arm. The housing includes a front side including a closed configuration, a rear side, and a receiving space extending from the rear side and structured to slidably receive a slider of the forehead support. The forehead support is slidably mounted for linear movement in a direction which is substantially perpendicular to a longitudinal axis of the support arm. The single finger-operated push button includes a portion that extends through an opening provided in a top side of the housing.