Abstract:
An AC-to-DC power converting apparatus includes a power factor correction circuit generating a DC output voltage based on a rectified voltage obtained through rectifying an AC input voltage and on a PWM signal generated based on an adjustment current and a predetermined ramp signal. A multiplier-divider circuit includes: a ramp generating unit generating a ramp signal based on a clock signal and on a first detection voltage associated with the rectified voltage; a control unit generating a control signal based on the clock signal, the ramp signal, and a detection voltage generated based on the DC output voltage; and an output unit generating an adjustment signal based on an input signal associated with the rectified voltage and the control signal.
Abstract:
A soft-start switching power converter includes a voltage converting circuit and a soft-start circuit. The voltage converting circuit includes a transformer, and a first switch which includes a first terminal connected to the transformer, a second terminal providing a trigger signal, and a control terminal receiving a control signal, and which is controlled to switch between conduction and nonconduction, such that the transformer generates a feedback voltage. The soft-start circuit receives the trigger signal, generates the control signal according to the trigger signal, and determines whether or not to clamp the control signal at a preset voltage level based on the trigger signal.
Abstract:
A light emitting system includes a series connection of a light emitting unit and a variable current source, and a voltage conversion device that includes a rectifier circuit and an output circuit. The rectifier circuit rectifies an AC voltage to generate a rectified voltage across a first rectifier output coupled to one end of the series connection of the light emitting unit and the variable current source, and a second rectifier output. The output circuit is coupled between the second rectifier output and another end of the series connection of the light emitting unit and the variable current source, and is configured to generate a direct-current (DC) output voltage.
Abstract:
An AC-to-DC power converting apparatus includes a power factor correction circuit generating a DC output voltage based on a rectified voltage obtained through rectifying an AC input voltage and on a PWM signal generated based on an adjustment current and a predetermined ramp signal. A multiplier-divider circuit includes: a ramp generating unit generating a ramp signal based on a clock signal and on a first detection voltage associated with the rectified voltage; a control unit generating a control signal based on the clock signal, the ramp signal, and a detection voltage generated based on the DC output voltage; and an output unit generating an adjustment signal based on an input signal associated with the rectified voltage and the control signal.
Abstract:
A soft-start switching power converter includes a voltage converting circuit and a soft-start circuit. The voltage converting circuit includes a transformer, and a first switch which includes a first terminal connected to the transformer, a second terminal providing a trigger signal, and a control terminal receiving a control signal, and which is controlled to switch between conduction and nonconduction, such that the transformer generates a feedback voltage. The soft-start circuit receives the trigger signal, generates the control signal according to the trigger signal, and determines whether or not to clamp the control signal at a preset voltage level based on the trigger signal.
Abstract:
A power converter includes a rectifier and a power factor corrector. The rectifier is to be coupled to an alternating current power source and is configured to output a rectified signal. The power factor corrector includes a correcting circuit and a control circuit. The correcting circuit receives the rectified signal and is configured to generate an output voltage based on the rectified signal and a driving signal. The control circuit is configured to generate a first to-be-compared signal based on the rectified signal, to generate a second to-be-compared signal based on the output voltage, to compare the first and second to-be-compared signals, and to generate the driving signal based on a result of comparison performed thereby.
Abstract:
A power converter includes a rectifier and a power factor corrector. The rectifier is to be coupled to an alternating current power source and is configured to output a rectified signal. The power factor corrector includes a correcting circuit and a control circuit. The correcting circuit receives the rectified signal and is configured to generate an output voltage based on the rectified signal and a driving signal. The control circuit is configured to generate a first to-be-compared signal based on the rectified signal, to generate a second to-be-compared signal based on the output voltage, to compare the first and second to-be-compared signals, and to generate the driving signal based on a result of comparison performed thereby.