摘要:
The present invention provides a method for depositing nano-porous low dielectric constant films by reacting a mixture comprising an oxidizable silicon component and an oxidizable component having thermally labile groups with an oxidizing gas in gas-phase plasma-enhanced reaction. The deposited silicon oxide based film is annealed to form dispersed microscopic voids that remain in a nano-porous silicon oxide based film having a low-density structure. The nano-porous silicon oxide based films are useful for forming layers between metal lines with or without liner or cap layers. The nano-porous silicon oxide based films may also be used as an intermetal dielectric layer for fabricating dual damascene structures.
摘要:
The present invention provides a method for depositing nano-porous low dielectric constant films by reacting an oxidizable silicon containing compound or mixture comprising an oxidizable silicon component and an oxidizable non-silicon component having thermally liable groups with nitrous oxide, oxygen, ozone, or other source of reactive oxygen in gas-phase plasma-enhanced reaction. The deposited silicon oxide based film is annealed to form dispersed microscopic voids that remain in a nano-porous silicon oxide based film having a low-density structure. The nano-porous silicon oxide based films are useful for forming layers between metal lines with or without liner or cap layers. The nano-porous silicon oxide based films may also be used as an intermetal dielectric layer for fabricating dual damascene structures. Preferred nano-porous silicon oxide based films are produced by reaction of methylsilyl-1,4-dioxinyl ether or methylsiloxanyl furan and 2,4,6-trisilaoxane or cyclo-1,3,5,7-tetrasilylene-2,6-dioxy-4,8 dimethylene with nitrous oxide or oxygen followed by a cure/anneal that includes a gradual increase in temperature.
摘要:
A process for depositing porous silicon oxide-based films using a sol-gel approach utilizing a precursor solution formulation which includes a purified nonionic surfactant and an additive among other components, where the additive is either an ionic additive or an amine additive which forms an ionic ammonium type salt in the acidic precursor solution. Using this precursor solution formulation enables formation of a film having a dielectric constant less than 2.5, appropriate mechanical properties, and minimal levels of alkali metal impurities. In one embodiment, this is achieved by purifying the surfactant and adding ionic or amine additives such as tetraalkylammonium salts and amines to the stock precursor solution. In some embodiments, the ionic additive is a compound chosen from a group of cationic additives of the general composition [NR(CH3)3]+A−, where R is a hydrophobic ligand of chain length 1 to 24, including tetramethylammonium and cetyltrimethylammonium, and A− is an anion, which may be chosen from the group consisting essentially of formate, nitrate, oxalate, acetate, phosphate, carbonate, and hydroxide and combinations thereof. Tetramethylammonium salts, or more generally tetraalkylammonium salts, or tetraorganoammonium salts or organoamines in acidic media are added to surfactant templated porous oxide precursor formulations to increase the ionic content, replacing alkali ion impurities (sodium and potassium) removed during surfactant purification, but which are found to exhibit beneficial effects in promoting the formation of the resulting dielectric.
摘要:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas comprising carbon at a constant RF power level. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers.
摘要:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas comprising carbon at a constant RF power level. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers.
摘要:
A method of and an apparatus for coating a substrate with a polymer solution to produce a film of uniform thickness, includes mounting the substrate inside an enclosed housing and passing a control gas, which may be a solvent vapor-bearing gas into the housing through an inlet. The polymer solution is deposited onto the surface of the substrate in the housing and the substrate is then spun. The control gas and any solvent vapor and particulate contaminants suspended in the control gas are exhausted from the housing through an outlet and the solvent vapor concentration is controlled by controlling the temperature of the housing and the solvent from which the solvent vapor-bearing gas is produced. Instead the concentration can be controlled by mixing gases having different solvent concentrations. The humidity of the gas may also be controlled.
摘要:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas comprising carbon at a constant RF power level. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers.
摘要:
A method of and an apparatus for coating a substrate with a polymer solution to produce a film of uniform thickness, includes mounting the substrate inside an enclosed housing and passing a control gas, which may be a solvent vapor-bearing gas into the housing through an inlet. The polymer solution is deposited onto the surface of the substrate in the housing and the substrate is then spun. The control gas and any solvent vapor and particulate contaminants suspended in the control gas are exhausted from the housing through an outlet and the solvent vapor concentration is controlled by controlling the temperature of the housing and the solvent from which the solvent vapor-bearing gas is produced. Instead the concentration can be controlled by mixing gases having different solvent concentrations. The humidity of the gas may also be controlled.
摘要:
A method of and an apparatus for coating a substrate with a polymer solution to produce a film of uniform thickness, includes mounting the substrate inside an enclosed housing and passing a control gas, which may be a solvent vapor-bearing gas into the housing through an inlet. The polymer solution is deposited onto the surface of the substrate in the housing and the substrate is then spun. The control gas and any solvent vapor and particulate contaminants suspended in the control gas are exhausted from the housing through an outlet and the solvent vapor concentration is controlled by controlling the temperature of the housing and the solvent from which the solvent vapor-bearing gas is produced. Instead the concentration can be controlled by mixing gases having different solvent concentrations. The humidity of the gas may also be controlled.
摘要:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10W to about 200W or a pulsed RF power level from about 20W to about 500W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, dimethylsilane, (CH3)2SiH2, or 1,1,3,3-tetramethyl-disiloxane, (CH3)2—SiH—O—SiH—(CH3)2, and nitrous oxide, N2O, at a constant RF power level from about 10W to about 150W, or a pulsed RF power level from about 20W to about 250W during 10% to 30% of the duty cycle.