Abstract:
Disclosed examples include power conversion systems and methods to operate an inverter to drive a motor load through an intervening output filter, a transformer and a cable, including a current regulator to compute a command value according to a current reference value and a motor current feedback value, a cross-coupled feedforward component to compensate the command value by an estimated cross-coupled voltage value to compute a control output value, a cross-coupled object component to compute the motor current feedback value according to a voltage value using a plant transfer function representing the output filter, the transformer, the cable and the motor load, and a controller to provide the inverter switching control signals to control the inverter according to the control output value.
Abstract:
Disclosed examples include methods, computer readable mediums and motor drive power conversion systems for sensorless speed control of a motor driven by an inverter through an intervening filter, a transformer and a motor cable, in which sensorless vector control is used to regulate the motor speed based on a speed feedback value computed according to voltage or current values associated with the motor drive using an observer having formulas and impedance parameters of the filter, the transformer, the motor cable and the motor.
Abstract:
Motor drive control apparatus and methods are presented for sensorless control of a driven motor using open loop current regulated control during low-speed operation and an EMF-based position observer for position estimation during higher speed operation, with zero feedback speed during low-speed open-loop operation and feedback speed estimated by the EMF-based observer during high-speed operation and with velocity mode control over the full speed range and mode control hysteresis for smooth transitions between open loop and EMF-based observer control.
Abstract:
Disclosed examples include motor drive power conversion systems with an inverter, as well as a controller methods to drive a motor in which output filter capacitor currents are computed and used to compensate the motor control in consideration of damping resistance values of an output filter.
Abstract:
Disclosed examples include motor drive power conversion systems with an inverter, as well as a controller methods to drive a motor in which output filter capacitor currents are computed and used to compensate the motor control in consideration of damping resistance values of an output filter.
Abstract:
Disclosed examples include power conversion systems, methods and computer readable mediums to operate an inverter to drive a motor load through an intervening filter, by computing a speed error value according to a speed reference value and a speed feedback value, computing a torque reference value according to the speed error value, computing a motor current reference value according to the torque reference value, compensating the motor current reference value according to capacitor currents of the output filter using a transfer function representing an output current to input current amplitude vs. frequency behavior of the output filter and the motor load, and controlling the inverter according to the inverter output current reference value.
Abstract:
Disclosed examples include methods, computer readable mediums and motor drive power conversion systems for sensorless speed control of a motor driven by an inverter through an intervening filter, a transformer and a motor cable, in which sensorless vector control is used to regulate the motor speed based on a speed feedback value computed according to voltage or current values associated with the motor drive using an observer having formulas and impedance parameters of the filter, the transformer, the motor cable and the motor.
Abstract:
Power converters and methods are presented for driving an AC load connected through an intervening filter circuit, in which at least one filter current or voltage signal or value is determined according to feedback signals or values representing an output parameter at an AC output of the power converter, and AC electrical output power is generated at the AC output based at least partially on the at least one filter current or voltage signal or value.
Abstract:
Disclosed examples include power conversion systems, methods and computer readable mediums to operate an inverter to drive a motor load through an output filter, in which a control output value is computed according to a current reference value and a current feedback value using a proportional-integral (PI) current regulator, the control output value is filtered using a lag compensator filter to compute an inverter output command value, and the inverter is controlled according to the inverter output command value.
Abstract:
Disclosed examples include power conversion systems, methods and computer readable mediums to operate an inverter to drive a motor load through an intervening filter, by computing a speed error value according to a speed reference value and a speed feedback value, computing a torque reference value according to the speed error value, computing a motor current reference value according to the torque reference value, compensating the motor current reference value according to capacitor currents of the output filter using a transfer function representing an output current to input current amplitude vs. frequency behavior of the output filter and the motor load, and controlling the inverter according to the inverter output current reference value.