摘要:
An embodiment of the invention provides a semiconductor structure, which may include a stud of a first conductive material formed inside a dielectric layer; a via of a second conductive material having a bottom and sidewalls with the bottom and the sidewalls being covered by a conductive liner, and the bottom being formed directly on top of the stud and being in contact with the via through the conductive liner; and one or more conductive paths of a third conductive material connecting to the via through the conductive liner at the sidewalls of said the. A method of making the semiconductor structure is also provided.
摘要:
An embodiment of the invention provides a semiconductor structure, which may include a stud of a first conductive material formed inside a dielectric layer; a via of a second conductive material having a bottom and sidewalls with the bottom and the sidewalls being covered by a conductive liner, and the bottom being formed directly on top of the stud and being in contact with the via through the conductive liner; and one or more conductive paths of a third conductive material connecting to the via through the conductive liner at the sidewalls of said the. A method of making the semiconductor structure is also provided.
摘要:
An embodiment of the invention provides a semiconductor structure, which may include a stud of a first conductive material formed inside a dielectric layer; a via of a second conductive material having a bottom and sidewalls with the bottom and the sidewalls being covered by a conductive liner, and the bottom being formed directly on top of the stud and being in contact with the via through the conductive liner; and one or more conductive paths of a third conductive material connecting to the via through the conductive liner at the sidewalls of said the. A method of making the semiconductor structure is also provided.
摘要:
Structures of electronic fuses (e-fuse) are provided. An un-programmed e-fuse includes a via of a first conductive material having a bottom and sidewalls with a portion of the sidewalls being covered by a conductive liner and the bottom of the via being formed on top of a dielectric layer, and a first and a second conductive path of a second conductive material formed on top of the dielectric layer with the first and second conductive paths being conductively connected through, and only through, the via at the sidewalls. A programmed e-fuse includes a via; a first conductive path at a first side of the via and being separated from sidewalls of the via by a void; and a second conductive path at a second different side of the via and being in conductive contact with the via through sidewalls of the via.
摘要:
An embodiment of the invention provides a semiconductor structure, which may include a stud of a first conductive material formed inside a dielectric layer; a via of a second conductive material having a bottom and sidewalls with the bottom and the sidewalls being covered by a conductive liner, and the bottom being formed directly on top of the stud and being in contact with the via through the conductive liner; and one or more conductive paths of a third conductive material connecting to the via through the conductive liner at the sidewalls of said the. A method of making the semiconductor structure is also provided.
摘要:
Disclosed are a damascene and dual damascene processes both of which incorporate the use of a release layer to remove trace amounts of residual material between metal interconnect lines. The release layer is deposited onto a dielectric layer. The release layer comprises an organic material, a dielectric material, a metal or a metal nitride. Trenches are etched into the dielectric layer. The trenches are lined with a liner and filled with a conductor. The conductor and liner materials are polished off the release layer. However, trace amounts of the residual material may remain. The release layer is removed (e.g., by an appropriate solvent or wet etching process) to remove the residual material. If the trench is formed such that the release layer overlaps the walls of the trench, then when the release layer is removed another dielectric layer can be deposited that reinforces the corners around the top of the metal interconnect line.
摘要:
Methods of forming a gas dielectric structure for a semiconductor structure by using a sacrificial layer. In particular, one embodiment of the invention includes forming an opening for semiconductor structure in a dielectric layer on a substrate; depositing a sacrificial layer over the opening; performing a directional etch on the sacrificial layer to form a sacrificial layer sidewall on the opening; depositing a conductive liner over the opening; depositing a metal in the opening; planarizing the metal and the conductive liner; removing the sacrificial layer sidewall to form a void; and depositing a cap layer over the void to form the gas dielectric structure. The invention is easily implemented in damascene wire formation processes, and improves structural stability.
摘要:
A device and method for evaluating reliability of a semiconductor chip structure built by a manufacturing process includes a test structure built in accordance with a manufacturing process. The test structure is thermal cycled and the yield of the test structure is measured. The reliability of the semiconductor chip structure built by the manufacturing process is evaluated based on the yield performance before the thermal cycling.
摘要:
A device and method for evaluating reliability of a semiconductor chip structure built by a manufacturing process includes a test structure built in accordance with a manufacturing process. The test structure is thermal cycled and the yield of the test structure is measured. The reliability of the semiconductor chip structure built by the manufacturing process is evaluated based on the yield performance before the thermal cycling.
摘要:
A method and apparatus for detecting metal extrusion associated with electromigration (EM) under high current density situations within an EM test line by measuring changes in capacitance associated with metal extrusion that occurs in the vicinity of the charge carrying surfaces of one or more capacitors situated in locations of close physical proximity to anticipated sites of metal extrusion on an EM test line are provided. The capacitance of each of the one or more capacitors is measured prior to and then during or after operation of the EM test line so as to detect capacitance changes indicating metal extrusion.