METHOD OF FABRICATING SEMI-INSULATING GALLIUM NITRIDE USING AN ALUMINUM GALLIUM NITRIDE BLOCKING LAYER
    5.
    发明申请
    METHOD OF FABRICATING SEMI-INSULATING GALLIUM NITRIDE USING AN ALUMINUM GALLIUM NITRIDE BLOCKING LAYER 审中-公开
    使用氮化铝阻挡层制备半绝缘氮化铝的方法

    公开(公告)号:US20100109018A1

    公开(公告)日:2010-05-06

    申请号:US12610938

    申请日:2009-11-02

    摘要: A method for fabricating a single crystal, high quality, semi-insulating (SI) gallium nitride (GaN) layer using an AlxGa1-xN blocking layer. A buffer layer is grown on a substrate, the AlxGa1-xN blocking layer is grown on the buffer layer, and a single crystal, high quality, SI-GaN layer is grown on the AlxGa1-xN blocking layer. The AlxGa1-xN blocking layer acts as a diffusion blocking layer that prevents the diffusion of donors from the substrate from reaching the SI-GaN layer. The resulting SI-GaN layer reduces parasitic current flow and parasitic capacitive effects in electronic devices.

    摘要翻译: 使用Al x Ga 1-x N阻挡层制造单晶,高质量,半绝缘(SI)氮化镓(GaN)层的方法。 在衬底上生长缓冲层,在缓冲层上生长Al x Ga 1-x N阻挡层,并且在Al x Ga 1-x N阻挡层上生长单晶,高质量的SI-GaN层。 Al x Ga 1-x N阻挡层充当扩散阻挡层,防止供体从衬底扩散到达SI-GaN层。 所产生的SI-GaN层减少了电子器件中的寄生电流和寄生电容效应。

    Fuel processing systems with thermally integrated componentry
    6.
    发明授权
    Fuel processing systems with thermally integrated componentry 有权
    具有热集成组件的燃油处理系统

    公开(公告)号:US09017436B2

    公开(公告)日:2015-04-28

    申请号:US13027584

    申请日:2011-02-15

    摘要: Hydrogen-producing assemblies, fuel cell systems including the same, methods of producing hydrogen gas, and methods of powering an energy-consuming device. Hydrogen-producing assemblies may include a monolithic body that defines at least a reforming conduit, and in some embodiments a plurality of reforming conduits, in which a feed stream is catalyzed into a reformate gas stream containing hydrogen gas, and a burner conduit, in which a fuel-air stream is combusted. The monolithic body is constructed to conduct heat generated by the exothermic reaction of the combustion from the burner conduit to the reformer conduit. In some hydrogen-producing assemblies, the monolithic body further defines a vaporizing conduit, in which liquid portions of the feed stream are vaporized prior to being delivered to the reformer conduit, and the monolithic body may be constructed to conduct heat from the burner conduit to the vaporizing conduit.

    摘要翻译: 制氢组件,包括其的燃料电池系统,生产氢气的方法,以及为消耗能量装置供电的方法。 制氢组件可以包括至少限定重整导管的整体式主体,并且在一些实施例中为多个重整导管,其中进料流被催化成含有氢气的重整产品气流和燃烧器导管,其中 燃料 - 空气流燃烧。 整体式结构被构造成将由燃烧器的燃烧的放热反应产生的热量从燃烧器管道传导到重整器导管。 在一些制氢组件中,整体式体还进一步限定了蒸发导管,其中进料流的液体部分在被输送到重整器导管之前被蒸发,并且整体式主体可被构造成将热量从燃烧器导管传导到 蒸发管道。

    N-type gallium-nitride layer having multiple conductive intervening layers
    7.
    发明授权
    N-type gallium-nitride layer having multiple conductive intervening layers 有权
    具有多个导电中间层的N型氮化镓层

    公开(公告)号:US09012939B2

    公开(公告)日:2015-04-21

    申请号:US13196828

    申请日:2011-08-02

    申请人: Zhen Chen Yi Fu

    发明人: Zhen Chen Yi Fu

    摘要: A vertical GaN-based blue LED has an n-type layer comprising multiple conductive intervening layers. The n-type layer contains a plurality of periods. Each period of the n-type layer includes a gallium-nitride (GaN) sublayer and a thin conductive aluminum-gallium-nitride (AlGaN:Si) intervening sublayer. In one example, each GaN sublayer has a thickness substantially more than 100 nm and less than 1000 nm, and each AlGaN:Si intervening sublayer has a thickness less than 25 nm. The entire n-type layer is at least 2000 nm thick. The AlGaN:Si intervening layer provides compressive strain to the GaN sublayer thereby preventing cracking. After the epitaxial layers of the LED are formed, a conductive carrier is wafer bonded to the structure. The silicon substrate is then removed. Electrodes are added and the structure is singulated to form a finished LED device. Because the AlGaN:Si sublayers are conductive, the entire n-type layer can remain as part of the finished LED device.

    摘要翻译: 垂直GaN基蓝色LED具有包括多个导电中间层的n型层。 n型层包含多个周期。 n型层的每个周期包括氮化镓(GaN)子层和薄导电铝 - 氮化镓(AlGaN:Si)介入子层。 在一个示例中,每个GaN子层具有基本上大于100nm且小于1000nm的厚度,并且每个AlGaN:Si中间层具有小于25nm的厚度。 整个n型层的厚度至少为2000nm。 AlGaN:Si中间层为GaN子层提供压缩应变,从而防止开裂。 在形成LED的外延层之后,将导电载体晶片结合到该结构上。 然后去除硅衬底。 添加电极,并且将结构单个化以形成成品的LED器件。 因为AlGaN:Si子层是导电的,所以整个n型层可以保留为最终的LED器件的一部分。

    Systems and methods for actively controlling steam-to-carbon ratio in hydrogen-producing fuel processing systems
    8.
    发明授权
    Systems and methods for actively controlling steam-to-carbon ratio in hydrogen-producing fuel processing systems 有权
    在制氢燃料处理系统中积极控制蒸汽与碳之比的系统和方法

    公开(公告)号:US08920732B2

    公开(公告)日:2014-12-30

    申请号:US13028044

    申请日:2011-02-15

    申请人: Zhen Chen Xun Ouyang

    发明人: Zhen Chen Xun Ouyang

    摘要: The present disclosure is directed to systems and methods for actively controlling the steam-to-carbon ratio in hydrogen-producing fuel processing systems that include a feedstock delivery system. The feedstock delivery system supplies a combined feedstock stream including steam and carbon-containing feedstock to a hydrogen-producing region, which produces a mixed gas stream including hydrogen gas as a majority component therefrom. The systems and methods may include measuring a thermodynamic property of a steam stream, a carbon-containing feedstock stream, and/or the combined feedstock stream and controlling the flow rate and/or pressure of a water stream, the steam stream, and/or the carbon-containing feedstock stream based on a desired steam-to-carbon ratio in the combined feedstock stream and/or a desired flow rate of the mixed gas stream and may include feedforward and/or feedback control strategies.

    摘要翻译: 本公开涉及用于在包括原料输送系统的制氢燃料处理系统中主动控制蒸汽与碳之比的系统和方法。 原料输送系统将包括蒸汽和含碳原料的组合原料流供应到产氢区,其产生包含氢气作为其主要成分的混合气流。 系统和方法可以包括测量蒸汽流,含碳原料流和/或组合的原料流的热力学性质,并控制水流,蒸汽流和/或蒸汽流的流速和/或压力。 基于组合的原料流中所需的蒸汽 - 碳比和/或混合气流的期望流速的含碳原料流,并且可以包括前馈和/或反馈控制策略。

    LED having a low defect N-type layer that has grown on a silicon substrate
    9.
    发明授权
    LED having a low defect N-type layer that has grown on a silicon substrate 有权
    LED具有在硅衬底上生长的低缺陷N型层

    公开(公告)号:US08865565B2

    公开(公告)日:2014-10-21

    申请号:US13196854

    申请日:2011-08-02

    申请人: Zhen Chen

    发明人: Zhen Chen

    摘要: A vertical GaN-based blue LED has an n-type GaN layer that was grown directly on Low Resistance Layer (LRL) that in turn was grown over a silicon substrate. In one example, the LRL is a low sheet resistance GaN/AlGaN superlattice having periods that are less than 300 nm thick. Growing the n-type GaN layer on the superlattice reduces lattice defect density in the n-type layer. After the epitaxial layers of the LED are formed, a conductive carrier is wafer bonded to the structure. The silicon substrate is then removed. Electrodes are added and the structure is singulated to form finished LED devices. In some examples, some or all of the LRL remains in the completed LED device such that the LRL also serves a current spreading function. In other examples, the LRL is entirely removed so that no portion of the LRL is present in the completed LED device.

    摘要翻译: 垂直的GaN基蓝色LED具有直接在低电阻层(LRL)上生长的n型GaN层,其又在硅衬底上生长。 在一个示例中,LRL是具有小于300nm厚的周期的低薄层电阻GaN / AlGaN超晶格。 在超晶格上生长n型GaN层减少n型层中的晶格缺陷密度。 在形成LED的外延层之后,将导电载体晶片结合到该结构上。 然后去除硅衬底。 添加电极,并将结构单片化以形成成品的LED器件。 在一些示例中,LRL中的一些或全部保持在完成的LED器件中,使得LRL还用于电流扩展功能。 在其他示例中,LRL被完全去除,使得在完成的LED装置中不存在LRL的任何部分。

    LED that has bounding silicon-doped regions on either side of a strain release layer
    10.
    发明授权
    LED that has bounding silicon-doped regions on either side of a strain release layer 有权
    LED在应变释放层的任一侧具有界限的硅掺杂区域

    公开(公告)号:US08669585B1

    公开(公告)日:2014-03-11

    申请号:US13602145

    申请日:2012-09-01

    申请人: Zhen Chen Yi Fu

    发明人: Zhen Chen Yi Fu

    IPC分类号: H01L29/36

    摘要: A strain release layer adjoining the active layer in a blue LED is bounded on the bottom by a first relatively-highly silicon-doped region and is also bounded on the top by a second relatively-highly silicon-doped region. The second relatively-highly silicon-doped region is a sublayer of the active layer of the LED. The first relatively-highly silicon-doped region is a sublayer of the N-type layer of the LED. The first relatively-highly silicon-doped region is also separated from the remainder of the N-type layer by an intervening sublayer that is only lightly doped with silicon. The silicon doping profile promotes current spreading and high output power (lumens/watt). The LED has a low reverse leakage current and a high ESD breakdown voltage. The strain release layer has a concentration of indium that is between 5×1019 atoms/cm3 and 5×102° atoms/cm3, and the first and second relatively-highly silicon-doped regions have silicon concentrations that exceed 1×1018 atoms/cm3.

    摘要翻译: 在蓝色LED中邻接有源层的应变释放层在底部由第一相对高的硅掺杂区域界定,并且在顶部由第二相对高的硅掺杂区域界定。 第二相对高的硅掺杂区域是LED的有源层的子层。 第一相对高的硅掺杂区域是LED的N型层的子层。 第一相对高的硅掺杂区域也通过仅轻微掺杂硅的中间子层与N型层的其余部分分离。 硅掺杂分布促进电流扩散和高输出功率(流明/瓦特)。 LED具有低反向漏电流和高ESD电压。 应变释放层的铟浓度介于5×1019原子/ cm3至5×102°原子/ cm3之间,第一和第二相对高度的硅掺杂区域的硅浓度超过1×1018原子/ cm3 。