Abstract:
Systems and methods for automatic steering of marine seismic sources are described. One system comprises a marine seismic spread comprising a towing vessel and a seismic source, the seismic source comprising one or more source arrays each having a center of source array, each source array having one or more source strings; a seismic source deployment sub-system on the towing vessel, the sub-system controlled by a controller including a software module, the software module and the deployment sub-system adapted to control an inline distance between one of the centers of source array and a target coordinate. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, allowing a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
Apparatus, systems and methods for connecting two seismic streamers are disclosed that enable two streamers to be towed in a desired arrangement. One apparatus comprises an elongate member having a first portion and a second portion, and an orientation member connected to the elongate member between the first and second portions, the orientation member functioning, when the streamers are connected by the apparatus and towed, to maintain orientation of the streamers. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
Systems and methods for acquiring marine seismic data are described. One system comprises a marine seismic spread adapted to survey a sub-sea geologic deposit, the spread comprising one or more seismic instruments attached to or within an instrument support bounded by a controllable boundary; and one or more control vessels coupled to the controllable boundary. One method comprises deploying a marine seismic spread as described, and surveying a sub-sea geologic feature using the marine seismic spread while controlling the controllable boundary. This abstract is provided to comply with the rules requiring an abstract, allowing a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
Systems and methods for acquiring marine seismic data are described. One system comprises a marine seismic spread adapted to survey a sub-sea geologic deposit, the spread comprising one or more seismic instruments attached to or within an instrument support bounded by a controllable boundary; and one or more control vessels coupled to the controllable boundary. One method comprises deploying a marine seismic spread as described, and surveying a sub-sea geologic feature using the marine seismic spread while controlling the controllable boundary. This abstract is provided to comply with the rules requiring an abstract, allowing a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
Systems and methods for automatic steering of marine seismic sources are described. One system comprises a marine seismic spread comprising a towing vessel and a seismic source, the seismic source comprising one or more source arrays each having a center of source array, each source array having one or more source strings; a seismic source deployment sub-system on the towing vessel, the sub-system controlled by a controller including a software module, the software module and the deployment sub-system adapted to control an inline distance between one of the centers of source array and a target coordinate. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, allowing a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A marine seismic system having a tow vessel; a first tow member connected to the tow vessel; a second tow member connected to the tow vessel; a first distance member having a first end connected to the first tow member and a second end connected to the second tow member; and a first attachment device connecting the first end to the first tow member, the first attachment member operational between an engaged position securing the first end of the distance member in a fixed position relative to the first tow member and a disengaged position permitting the first attachment device to move along a portion of the first tow member.
Abstract:
Apparatus and methods are described for remotely controlling position of marine seismic equipment. One apparatus comprises a source connected to a tow member; and an adjustment mechanism connected to the source and the tow member, the adjustment mechanism adapted to actively manipulate an angle of attack of the source. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
Marine seismic survey systems and methods are presented. One system comprises a source array, a tow vessel, one or more source tow members, one or more deflecting members operatively connected to the source array; one or more streamers connected to the tow vessel by a corresponding number of streamer tow members, one or more of the streamers positioned by corresponding one or more active or passive streamer deflectors, one or more source separation members connecting one or more source tow members to one or more streamer tow members, and optionally one or more streamer separation members connecting one or more streamer tow members. The one or more source separation members help position the source array in conjunction with the one or more. deflecting members. This abstract complies with rules requiring an abstract. It should not be used to limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
A technique for seismic surveying is presented in which a towed array, marine seismic spread, includes a plurality of streamers and a deflector system. The deflector system laterally spreads the seismic streamers, wherein at least one streamer in the spread is deflected using more than one deflector attached to the tow cable or streamer, and where the deflectors are not connected to a float on the sea surface. Other aspects of the technique include methods for towing such a spread and for controlling such a spread. Still other aspects include computing resources which may be used to perform the methods.
Abstract:
Techniques or mechanisms are provided to improve accuracy in determining headings and/or shapes of carrier structures based on measurements made by one or more compasses that are attached to or provided with the carrier structures. The carrier structures are used to carry survey receivers that detect survey signals affected by a subterranean structure.