Abstract:
A method for producing a coated and printed glass panel, includes providing a glass substrate having a metal-containing coating on at least one first surface and a polymeric protective layer arranged on this metal-containing coating, removing the temporary polymeric protective layer and the metal-containing coating only in a predetermined region, applying a ceramic ink in the predetermined region, wherein the removing is carried out with a laser and the polymeric protective layer and the metal-containing coating are intact outside the predetermined region after the removing.
Abstract:
An insulating glass element suitable for a refrigeration cabinet. The insulating glass element includes a first pane and a second pane spaced at a distance from the first pane. The first pane has two opposite parallel horizontal edges and two opposite parallel vertical edges. The second pane has two opposite parallel horizontal edges and two opposite parallel vertical edges. According to one aspect, two horizontal spacers are arranged between the first pane and the second pane. According to another aspect, two vertically arranged flat profiles are secured to the vertical edges of the first pane and to the vertical edges of the second pane. According to yet another aspect, the spacers and the flat profiles enclose an inner interpane space between the first pane and the second pane, and one of the two flat profiles is transparent.
Abstract:
A solar module, particularly a thin-layer solar module, is described. The solar module has a laminated complex with two substrates between which there is a layer structure which has a front electrode layer, a back electrode layer and an intermediate semiconductor layer for forming a plurality of solar cells connected up in series, two contact elements, at least one top element, two contact pieces, and at least one connection socket. A method for producing the solar module is also described.
Abstract:
A corner assembly including two insulated glass elements is presented. The two insulated glass elements are abutted against each other at an angle. Each of the two insulated glass elements include at least two panes. According to one aspect, the at least two panes are joined to each other using a spacer profile under formation of an interpane space. According to another aspect, the at least two panes are arranged parallel to each other. In yet another aspect, the at least two panes have, on their end region, mitered abutment ends, the mitered abutment ends being joined to each other via a film. The film is provided for joining the insulated glass elements using an adhesive means.
Abstract:
An insulating glazing unit having a first pane, a second pane, an outer pane interspace, an inner pane interspace, and a spacer is described. The spacer has a glazing interior surface, a first pane contact surface, and a second pane contact surface, a plastic profile, a primary sealing means, and a main member. The main member contains a sealing material containing a drying material. The plastic profile separates the outer pane interspace from the inner pane interspace. The main member is arranged in the outer pane interspace adjacent the plastic profile and the primary sealing means is arranged in the outer pane interspace adjacent the main member.
Abstract:
A spacer for insulating glazing units is described. The sealing arrangement includes a polymer base; which includes two pane contact surfaces, a glazing interior space surface and an outer surface and an extruded profiled seal on the outer surface, the extruded profiled seal and the polymer base being co-extruded.
Abstract:
An insulating glazing includes at least one first pane element, at least one spacer, and at least one connector. The spacer and the connector are arranged next to each other such that they extend along a common longitudinal axis, wherein the spacer and the connector accommodate and position the first pane element. The connector has at least one first electrically conductive conductor element such that an electrical connection can be established between an external power source and the first pane element via the first conductor element.
Abstract:
A spacer with an integrated ribbon cable for insulating glazings includes a main body including two pane contact surfaces, a glazing interior surface, an outer surface, a hollow chamber, and at least one ribbon cable on the outer surface, wherein the ribbon cable is materially bonded to the outer surface.
Abstract:
An alarm pane assembly is presented. The alarm pane assembly includes a pane made of tempered glass, a transparent, electrically conductive coating that is arranged on a surface of the pane, a sensor unit, and an antenna. According to one aspect, the sensor unit includes a transmitting unit and an evaluation unit. During operation, the transmitting unit forwards a high-frequency voltage signal with a frequency f in a range of 0.1 GHz to 6 GHz to the antenna, the antenna emits electromagnetic radiation of the frequency f, and the evaluation unit measures the impedance matching of the transmitting unit to the antenna. According to another aspect, the antenna is electromagnetically coupled to the conductive coating, and the sensor unit outputs an alarm signal when the measured impedance matching deviates from a reference value.