Abstract:
An electronic device includes a housing; a sensor module in the housing; a display; a memory; and a processor configured to monitor a blood glucose level of a user by using the sensor module; determine that the user is eating; record, in the memory, both a timepoint, of confirming that the blood glucose level exceeds the specific level, and the blood glucose level at the timepoint; determine, based on blood glucose records, a first timepoint, after the first meal, and a second timepoint, before the second meal; calculate an average value of blood glucose levels between the first timepoint and the second timepoint; obtain accumulated average value records daily; calculate a baseline blood glucose level of the user by using the plurality of accumulated average value records; and determine a low blood glucose reference level of the user based on the calculated baseline blood glucose level.
Abstract:
The wrist-type body component measuring apparatus includes: a band configured to be worn on a wrist of a user; a first input electrode and a first output electrode disposed on an inside surface of the band and configured to be in contact with the wrist of the user; a second input electrode and a second output electrode disposed on an outside surface of the band; a measuring unit configured to apply a current to the first and second input electrodes and detect a voltage from the first and second output electrodes to measure a body impedance of the user; and an electrode converter configured to convert a disposition of the first and second input electrodes and the first and second output electrodes based on a determination of whether the band is worn on a left wrist or a right wrist of the user.
Abstract:
A mobile healthcare device and method of operating the same are provided. The method includes setting a mode of the mobile healthcare device to a measurement mode, displaying a screen for guiding a user to maintain a predetermined position during the measurement mode, and, in response to a predetermined amount of time passing from a time at which the screen begins to be displayed, obtaining state information of the user based on bio information of the user, the bio information being received from a sensor.
Abstract:
Provided are a dual coupler device configured to receive lights of different polarization components, a spectrometer including the dual coupler device, and a non-invasive biometric sensor including the spectrometer. The dual coupler device may include, for example, a first coupler layer configured to receive a light of a first polarization component among incident lights. and a second coupler layer configured to receive a light of a second polarization component among the incident lights, wherein a polarization direction of the light of the first polarization component is perpendicular to a polarization direction of the light of the second polarization component. The first coupler layer and the second coupler layer may be spaced apart from each other and extended along a direction in which the light propagates in the first coupler layer and the second coupler layer.
Abstract:
Provided is a method of measuring body fat of a user, the method including: measuring a first impedance by using a 4-point measuring method; measuring a second impedance by using a 2-point measuring method; determining a bio impedance by using the first impedance and the second impedance; and determining a body fat percentage by using the bio impedance and body information of the user.
Abstract:
Provided is a wrist-type body component measuring apparatus. The wrist-type body component measuring apparatus includes: a band configured to be worn on a wrist of a user; a first input electrode and a first output electrode disposed on an inside surface of the band and configured to be in contact with the wrist of the user; a second input electrode and a second output electrode disposed on an outside surface of the band; a measuring unit configured to apply a current to the first and second input electrodes and detect a voltage from the first and second output electrodes to measure a body impedance of the user; and an electrode converter configured to convert a disposition of the first and second input electrodes and the first and second output electrodes based on a determination of whether the band is worn on a left wrist or a right wrist of the user.
Abstract:
According to example embodiments, a transistor includes a gate, a channel layer that is separate from the gate, a gate insulating layer between the gate and the channel layer, and a source electrode and a drain electrode respectively contacting a first region and a second region of the channel layer. The gate insulating layer includes an impurity metal containing region that includes an impurity metal and contacts the channel layer. The gate insulating layer includes an impurity metal non-containing region contacting the gate that is not doped with the impurity metal.
Abstract:
Methods and apparatuses for correcting an impedance measured by a sensor included in a wearable device are provided. In an exemplary embodiment, the methods includes: measuring, from an image including the wearable device and arms of a user, a first angle between a straight line connecting a left elbow joint of the user and a camera device for photographing the image and a straight line connecting the left elbow joint and the wearable device, a second angle between a straight line connecting the left elbow joint and the wearable device and a straight line connecting the wearable device and a right elbow joint of the user, a third angle between a straight line connecting the right elbow joint and the wearable device and a straight line connecting the right elbow joint and the camera device, and a fourth angle between a straight line connecting the right elbow joint and the camera device and a straight line connecting the left elbow joint and the camera device.
Abstract:
An electronic device is provided. The electronic device includes a housing comprising a front plate facing a first direction, a back plate facing a second direction that is opposite the first direction, and an outer wall which encompasses the space between the front plate and the back plate and in which a pipe passage extending to the outside is arranged, a speaker module positioned in the space, which is adjacent to the pipe passage, a printed circuit board arranged along at least a part of the side surface of the speaker module and formed along the periphery of the region between the outer wall, having the pipe passage, and the speaker module, and a first sealing member arranged between the back plate and a bracket and formed into a closed loop along the edge of the speaker module.
Abstract:
A workout management method performed by a wearable device is provided. The workout management method includes receiving a first information about an amount of exercise to be performed by a user, obtaining a second information about a current fitness state of the user, comparing the first information and the second information, and outputting the result of the comparison to the user.