Abstract:
An automatic test apparatus for embedded software and an automatic testing method thereof, the automatic testing apparatus for embedded software, includes an output detector which collects interface status information in accordance with data transmission/reception from at least one of first and second electronic devices respectively loaded with first and second embedded software and exchanging data therebetween, and extracts a keyword from the collected interface status information, a scenario composer which uses identification information about the first and second embedded software and the extracted keyword, and composes a scenario corresponding to a predetermined event status and a control command generator which generates a control command to reproduce the event status based on the composed scenario. Thus, it is possible to previously detect unpredictable and predictable problems that may occur in interaction between the plurality of embedded software, interface operation to transmit and receive data, etc., and reproduce them.
Abstract:
A device is provide including: a storage device comprising a memory configured to store configuration data used for test booting for a process of testing the device, before the test booting; and a controller configured to perform the test booting using the stored configuration data when receiving a start signal of the test booting, to control the process of testing the device to be performed after the test booting, and to delete the configuration data stored in the storage device when a completion signal of the process of testing the device is received.
Abstract:
A data processing method is a shared resource which is allocated to a multi-core processor includes receiving a first data stream from a first processor, when a second data stream is received from a second processor before processing of the first data stream is complete, locating the second data stream in front of a data stream which is on standby from among the first data stream, and processing the located second data stream and the first data stream on standby in sequence.
Abstract:
An IC device includes a substrate including a device region having a fin-type active region and a deep trench region; a gate line that extends in a direction intersecting the fin-type active region; and an inter-device isolation layer that fills the deep trench region. The gate line includes a first gate portion that extends on the device region to cover the fin-type active region and has a flat upper surface at a first level and a second gate portion that extends on the deep trench region to cover the inter-device isolation layer while being integrally connected to the first gate portion and has an upper surface at a second level that is closer to the substrate than the first level.
Abstract:
An automatic test apparatus for embedded software and an automatic testing method thereof, the automatic testing apparatus for embedded software, includes an output detector which collects interface status information in accordance with data transmission/reception from at least one of first and second electronic devices respectively loaded with first and second embedded software and exchanging data therebetween, and extracts a keyword from the collected interface status information, a scenario composer which uses identification information about the first and second embedded software and the extracted keyword, and composes a scenario corresponding to a predetermined event status and a control command generator which generates a control command to reproduce the event status based on the composed scenario. Thus, it is possible to previously detect unpredictable and predictable problems that may occur in interaction between the plurality of embedded software, interface operation to transmit and receive data, etc., and reproduce them.
Abstract:
Provided herein is an audio processing apparatus including: a controller configured to determine an initialization mode for processing video and audio signals provided from an audio provision apparatus of among a plurality of initialization modes, and to perform an initialization process differently according to the result of determination; and an audio processor configured to process the audio signal and output the processed audio signal, when the initialization process is performed.
Abstract:
An IC device includes a substrate including a device region having a fin-type active region and a deep trench region; a gate line that extends in a direction intersecting the fin-type active region; and an inter-device isolation layer that fills the deep trench region. The gate line includes a first gate portion that extends on the device region to cover the fin-type active region and has a flat upper surface at a first level and a second gate portion that extends on the deep trench region to cover the inter-device isolation layer while being integrally connected to the first gate portion and has an upper surface at a second level that is closer to the substrate than the first level.
Abstract:
A method for controlling a user terminal includes obtaining reference magnetic field information of the user terminal, detecting a magnetic field emitted from an external mobile terminal, and obtaining location information indicating a location of the external mobile terminal based on the reference magnetic field information and the detected magnetic field.
Abstract:
Provided is a control method of a user terminal apparatus and device, for speaker location detection and level control using a magnetic field. The method includes receiving reference magnetic field information generated by at least one speaker, in response to a magnetic field being generated based on the reference magnetic field information by the at least one speaker, detecting the magnetic field generated by the at least one speaker, acquiring location information of the at least one speaker using the detected magnetic field information and the reference magnetic field information, and transmitting the location information of each of the at least one speaker to a source apparatus.
Abstract:
An IC device includes a substrate including a device region having a fin-type active region and a deep trench region; a gate line that extends in a direction intersecting the fin-type active region; and an inter-device isolation layer that fills the deep trench region. The gate line includes a first gate portion that extends on the device region to cover the fin-type active region and has a flat upper surface at a first level and a second gate portion that extends on the deep trench region to cover the inter-device isolation layer while being integrally connected to the first gate portion and has an upper surface at a second level that is closer to the substrate than the first level.