Abstract:
The invention provides a substrate detergent composition used for cleaning a surface of a substrate, comprising: (A) A quaternary ammonium salt: 0.1 to 2.0% by mass; (B) Water: 0.1 to 4.0% by mass; and (C) An organic solvent: 94.0 to 99.8% by mass. There can be provided a substrate detergent composition used for cleaning a surface of a substrate contaminated with a silicone component whose water contact angle is 100° or more.
Abstract:
A pattern is formed by (i) applying a chemically amplified positive resist composition comprising (A) a base resin, (B) a photoacid generator, (C) an organic solvent, and (D) a polyvinyl alcohol or polyvinyl alkyl ether onto a substrate to form a resist film thereon, (ii) exposing the resist film to radiation, and (iii) dry etching the resist film with an oxygen-containing gas for development. Using the chemically amplified positive resist composition, a positive pattern is formed via dry development without a need for silylation.
Abstract:
An epoxy-modified silicone resin obtained using a compound having 3 or 4 glycidyl groups and 3 or 4 (meth)allyl groups in the molecule is novel. A curable composition comprising the epoxy-modified silicone resin cures into a film having improved heat resistance and adhesion.
Abstract:
An epoxy-modified silicone resin obtained using a compound having 3 or 4 glycidyl groups and 3 or 4 (meth)allyl groups in the molecule is novel. A curable composition comprising the epoxy-modified silicone resin cures into a film having improved heat resistance and adhesion.
Abstract:
A positive resist composition comprising an organosiloxane-modified novolak resin, a photosensitive agent, and an organic solvent is provided, the resin comprising structural units having formula (1) wherein R1 is an organosiloxy group, and R2 is hydrogen or alkyl. The composition is photosensitive, turns alkali soluble in the exposed region, eliminates any film thickness loss after development, and displays improved resistance to electrolytic plating and O2 dry etching.
Abstract:
An organosiloxane-modified novolak resin comprising structural units having formula (1) wherein R1 is an organosiloxy group having a monovalent C1-C10 hydrocarbon group bonded to silicon, and R2 is H or C1-C4 alkyl or alkoxy. The resin has high heat resistance and high strength inherent to novolak resins and low stress inherent to organosilicon compounds.
Abstract:
An organosiloxane-modified novolak resin comprising structural units having formula (1) wherein R1 is an organosiloxy group having a monovalent C1-C10 hydrocarbon group bonded to silicon, and R2 is H or C1-C4 alkyl or alkoxy. The resin has high heat resistance and high strength inherent to novolak resins and low stress inherent to organosilicon compounds.
Abstract:
A resin structure for the formation of a micro-structure is manufactured by (A) applying a composition comprising a polymer, a photoacid generator, an epoxy compound, and an organic solvent onto a substrate, (B) heating the composition to form a sacrificial film, (C) exposing imagewise the film to first high-energy radiation, (D) developing the film in an alkaline developer to form a sacrificial film pattern, (E) exposing the sacrificial film pattern to UV as second high-energy radiation, and (F) heating the substrate at 80-250° C. The exposure dose of first high-energy radiation in step (C) is up to 250 mJ/cm2. At the end of step (F), the sacrificial film has a sidewall angle of 80°-90° relative to the substrate.
Abstract translation:通过(A)将包含聚合物,光致酸产生剂,环氧化合物和有机溶剂的组合物涂布在基材上来制造用于形成微结构的树脂结构体,(B)加热组合物以形成牺牲品 (C)将膜成像曝光于第一高能辐射,(D)在碱性显影剂中显影所述膜以形成牺牲膜图案;(E)将所述牺牲膜图案暴露于UV作为第二高能辐射, 和(F)在80-250℃下加热基材。步骤(C)中第一高能辐射的曝光剂量高达250mJ / cm 2。 在步骤(F)结束时,牺牲膜相对于基底具有80°-90°的侧壁角。
Abstract:
In a chemically amplified positive resist composition comprising (A) a base resin, (B) a photoacid generator, (C) a thermal crosslinker, and (D) an organic solvent, the base resin is a specific polymer and the crosslinker is a siloxane compound. A coating of the composition is readily developable in aqueous alkaline solution. On heat treatment, it forms a cured resist pattern film of satisfactory profile.
Abstract:
A chemically amplified positive resist dry film to be formed on a support film contains 5-40 wt % of a component having a boiling point of 55-250° C. under atmospheric pressure. The resist dry film having flexibility and dimensional stability can be prepared through simple steps. The resist dry film can be efficiently and briefly laid on an article and processed to form a pattern.