Abstract:
The present disclosure is directed to a gate structure for a transistor. The gate structure is formed on a substrate and includes a trench. There are sidewalls that line the trench. The sidewalls have a first dimension at a lower end of the trench and a second dimension at an upper end of the trench. The first dimension being larger than the second dimension, such that the sidewalls are tapered from a lower region to an upper region. A high k dielectric liner is formed on the sidewalls and a conductive liner is formed on the high k dielectric liner. A conductive material is in the trench and is adjacent to the conductive liner. The conductive material has a first dimension at the lower end of the trench that is smaller than a second dimension at the upper end of the trench.
Abstract:
A method for fabricating a CMOS integrated circuit structure and the CMOS integrated circuit structure. The method includes creating one or more n-type wells, creating one or more p-type wells, creating one or more pFET source-drains embedded in each of the one or more n-type wells, creating one or more nFET source-drains embedded in each of the one or more p-type wells, creating a pFET contact overlaying each of the one or more pFET source-drains, and creating an nFET contact overlaying each of the one or more nFET source-drains. A material of each of the one or more pFET source-drains includes silicon doped with a p-type material; a material of each of the one or more nFET source-drains includes silicon doped with an n-type material; a material of each pFET contact includes nickel silicide; and a material of each nFET contact comprises titanium silicide.
Abstract:
An integrated circuit, including: a UTBOX layer; a first cell, including: FDSOI transistors; a first STI separating the transistors; a first ground plane located beneath one of the transistors and beneath the UTBOX layer; a first well; a second cell, including: FDSOI transistors; a second STI separating the transistors; a second ground plane located beneath one of the transistors and beneath the UTBOX layer; a second well; a third STI separating the cells, reaching the bottom of the first and second wells; a deep well extending continuously beneath the first and second wells, having a portion beneath the third STI whose doping density is at least 50% higher than the doping density of the deep well beneath the first and second STIs.
Abstract:
An integrated circuit, including: a first cell, including: FDSOI transistors; a UTBOX layer lying beneath the transistors; a first well lying beneath the insulator layer and beneath the transistors, the first well having a first type of doping; a first ground plane having a second type of doping, located beneath one of the transistors and between the insulator layer and the first well; a first STI separating the transistors and crossing the insulator layer; a first conductive element forming an electrical connection between the first well and the first ground plane, located under the first STI; a second cell including a second well; a second STI separating the cells, crossing the insulator layer and reaching the bottom of the first and second wells.
Abstract:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate. At least one dielectric layer is formed adjacent an end portion of the semiconductor fins and within the space between adjacent semiconductor fins. A pair of sidewall spacers is formed adjacent outermost semiconductor fins at the end portion of the semiconductor fins. The at least one dielectric layer and end portion of the semiconductor fins between the pair of sidewall spacers are removed. Source/drain regions are formed between the pair of sidewall spacers.
Abstract:
A method for making a semiconductor device may include forming first and second spaced apart semiconductor active regions with an insulating region therebetween, forming at least one sacrificial gate line extending between the first and second spaced apart semiconductor active regions and over the insulating region, and forming sidewall spacers on opposing sides of the at least one sacrificial gate line. The method may further include removing portions of the at least one sacrificial gate line within the sidewall spacers and above the insulating region defining at least one gate line end recess, filling the at least one gate line end recess with a dielectric material, and forming respective replacement gates in place of portions of the at least one sacrificial gate line above the first and second spaced apart semiconductor active regions.
Abstract:
A large area electrical contact for use in integrated circuits features a non-planar, sloped bottom profile. The sloped bottom profile provides a larger electrical contact area, thus reducing the contact resistance, while maintaining a small contact footprint. The sloped bottom profile can be formed by recessing an underlying layer, wherein the bottom profile can be crafted to have a V-shape, U-shape, crescent shape, or other profile shape that includes at least a substantially sloped portion in the vertical direction. In one embodiment, the underlying layer is an epitaxial fin of a FinFET. A method of fabricating the low-resistance electrical contact employs a thin etch stop liner for use as a hard mask. The etch stop liner, e.g., HfO2, prevents erosion of an adjacent gate structure during the formation of the contact.
Abstract:
A hetero-channel FinFET device provides enhanced switching performance over a FinFET device having a silicon channel, and is easier to integrate into a fabrication process than is a FinFET device having a germanium channel. A FinFET device featuring the heterogeneous Si/SiGe channel includes a fin having a central region made of silicon and sidewall regions made of SiGe. A hetero-channel pFET device in particular has higher carrier mobility and less gate-induced drain leakage current than either a silicon device or a SiGe device. The hetero-channel FinFET permits the SiGe portion of the channel to have a Ge concentration in the range of about 25-40% and permits the fin height to exceed 40 nm while remaining stable.
Abstract:
A method for making a semiconductor device may include forming first and second semiconductor regions laterally adjacent one another and each comprising a first semiconductor material. The method may further include forming an in-situ doped, punch-through stopper layer above the second semiconductor region comprising the first semiconductor material and a first dopant, and forming a semiconductor buffer layer above the punch-through stopper layer, where the punch-through stopper layer includes the first semiconductor material. The method may also include forming a third semiconductor region above the semiconductor buffer layer, where the third semiconductor region includes a second semiconductor material different than the first semiconductor material. In addition, at least one first fin may be formed from the first semiconductor region, and at least one second fin may be formed from the second semiconductor region, the punch-through stopper layer, the semiconductor buffer layer, and the third semiconductor region.
Abstract:
Tapered source and drain contacts for use in an epitaxial FinFET prevent short circuits and damage to parts of the FinFET during contact processing, thus improving device reliability. The inventive contacts feature tapered sidewalls and a pedestal where electrical contact is made to fins in the source and drain regions. The pedestal also provides greater contact area to the fins, which are augmented by extensions. Raised isolation regions define a valley around the fins. During source/drain contact formation, the valley is lined with a conformal barrier that also covers the fins themselves. The barrier protects underlying local oxide and adjacent isolation regions against gouging while forming the contact. The valley is filled with an amorphous silicon layer that protects the epitaxial fin material from damage during contact formation. A simple tapered structure is used for the gate contact.