Abstract:
At least one semiconductor chip or die is held within at a chip retaining formation provided in a chip holding device. The chip holding device is then positioned with the at least one semiconductor chip or die arranged facing a chip attachment location in a chip mounting substrate. This positioning produces a cavity between the at least one semiconductor chip or die arranged at the chip retaining formation and the chip attachment location in the chip mounting substrate. A chip attachment material is dispensed into the cavity. Once cured, the chip attachment material attaches the at least one semiconductor chip or die onto the substrate at the chip attachment location in the chip mounting substrate.
Abstract:
A process for manufacturing surface-mount semiconductor devices, in particular of the Quad-Flat No-Leads Multi-Row type, comprising providing a metal leadframe, in particular a copper leadframe, which includes a plurality of pads, each of which is designed to receive the body of the device, the pads being separated from adjacent pads by one or more rows of wire-bonding contacting areas, outermost rows from among the one or more rows of wire-bonding contacting areas identifying, together with outermost rows corresponding to the adjacent pads, separation regions.
Abstract:
An embodiment of a micro-electro-mechanical system of the MEMS type comprising at least one micro-electro-mechanical device of the MEMS type and one junction with a duct suitable to being associated with an external apparatus. Said junction being a printed circuit board PCB comprising at least two layers with juxtaposed faces, a channel being present in at least one face of at least one of said at least two layers suitable for realizing the duct with the juxtaposition of the other face of at least another one of at least two layers.
Abstract:
A semiconductor integrated circuit chip is arranged on a first surface of a substrate that includes electrically conductive lead formations in an array, wherein the electrically conductive lead formations are covered by a masking layer at a second surface opposite the first surface. The semiconductor integrated circuit chip is electrically coupled to electrically conductive lead formations and an insulating encapsulation is molded on the semiconductor integrated circuit chip. The masking layer is then selectively removed, for example, via laser ablation, from one or more of the electrically conductive lead formations. The electrically conductive lead formations that are left uncovered by the masking layer are then removed by an etching process applied to the second surface of the substrate. The selective removal of the unmasked electrically conductive lead formations serves to increase a creepage distance between those conductive lead formations that are left in place.
Abstract:
One or more embodiments are directed to quad flat no-lead (QFN) semiconductor packages, devices, and methods in which one or more electrical components are positioned between a die pad of a QFN leadframe and a semiconductor die. In one embodiment, a device includes a die pad, a lead that is spaced apart from the die pad, and at least one electrical component that has a first contact on the die pad and a second contact on the lead. A semiconductor die is positioned on the at least one electrical component and is spaced apart from the die pad by the at least one electrical component. The device further includes at least one conductive wire, or wire bond, that electrically couples the at least one lead to the semiconductor die.
Abstract:
A semiconductor device, such as a Quad-Flat No-lead (QFN) package, includes a semiconductor chip arranged on a die pad of a leadframe. The leadframe has an array of electrically-conductive leads around the die pad. The leads in the array have distal ends facing away from the die pad as well as recessed portions at an upper surface of the leads. Resilient material, such as low elasticity modulus material, is present at the upper surface of the leads and filling the recessed portions. An insulating encapsulation is molded onto the semiconductor chip. The resilient material is sandwiched between the insulating encapsulation and the distal ends of the leads. This resilient material facilitates flexibility of the leads, making them suited for reliable soldering to an insulated metal substrate.
Abstract:
A semiconductor product includes a layer of semiconductor die package molding material embedding a semiconductor die having a front surface and an array of electrically-conductive bodies such as spheres or balls around the semiconductor die. The electrically-conductive bodies have front end portions around the front surface of the semiconductor die and back end portions protruding from the layer of semiconductor die package molding material. Electrically-conductive formations are provided between the front surface of the semiconductor die and front end portions of the electrically-conductive bodies left uncovered by the package molding material. Light-permeable sealing material can be provided at electrically-conductive formations to facilitate inspecting the electrically-conductive formations via visual inspection through the light-permeable sealing material.
Abstract:
One or more embodiments are directed to quad flat no-lead (QFN) semiconductor packages, devices, and methods in which one or more electrical components are positioned between a die pad of a QFN leadframe and a semiconductor die. In one embodiment, a device includes a die pad, a lead that is spaced apart from the die pad, and at least one electrical component that has a first contact on the die pad and a second contact on the lead. A semiconductor die is positioned on the at least one electrical component and is spaced apart from the die pad by the at least one electrical component. The device further includes at least one conductive wire, or wire bond, that electrically couples the at least one lead to the semiconductor die.
Abstract:
A method for forming an electronic device includes embedding an integrated circuit die in a package including substrate of thermally conductive material with front and back surfaces and a through-hole. The die is sunk in the through-hole. A first insulating material layer covers the die front surface and the package front surface with first windows for accessing die terminals. Package terminals and package track are arranged on the first insulating layer. A second insulating material layer covers the first insulating layer and the package tracks with second windows for accessing the package terminals.
Abstract:
A method may include providing an electrically conductive laminar base member having a die attachment portion and a lead frame portion, producing a distribution of holes opening at a front surface of the base member, attaching an integrated circuit onto the front surface of the base member at the attachment portion, and producing a wire bonding pattern between the integrated circuit and wire bonding locations on the front surface of the base member at the lead frame portion. An electrically insulating package molding compound may be molded onto the front surface of the base member so that the integrated circuit and the wire bonding pattern are embedded in the package molding compound which penetrates into the holes opening at the front surface of the base member. The base member may be selectively etched from its back surface to produce residual portions of the base member at the wire bonding locations.