Abstract:
Three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor devices include an electrode structure with sequentially-stacked electrodes disposed on a substrate, semiconductor patterns penetrating the electrode structure, and memory elements including a first pattern and a second pattern interposed between the semiconductor patterns and the electrode structure, the first pattern vertically extending to cross the electrodes and the second pattern horizontally extending to cross the semiconductor patterns.
Abstract:
A semiconductor device includes a first semiconductor layer including a recess region and protrusions defined by the recessed region, first insulating patterns provided on the protrusions and extending to sidewalls of the protrusions, and a second semiconductor layer to fill the recess region and cover the first insulating patterns. The protrusions includes a first group of protrusions spaced apart from each other in a first direction to constitute a row and a second group of protrusions spaced from the first group of protrusions in a second direction intersecting the first direction and spaced from each other in the first direction to constitute a row. The second group of protrusions are shifted from the first group of protrusions in the first direction.
Abstract:
Provided is a three dimensional semiconductor device. The device may include mold layers vertically and sequentially stacked, a conductive pattern between the stacked mold layers, a plugging pattern vertically penetrating the stacked mold layers, an intermediate pattern between the conductive pattern and the plugging pattern, and protective layer patterns between the mold layers and the plugging pattern, wherein the protective layer patterns are separated by the intermediate pattern.
Abstract:
Provided is a three dimensional semiconductor device. The device may include mold layers vertically and sequentially stacked, a conductive pattern between the stacked mold layers, a plugging pattern vertically penetrating the stacked mold layers, an intermediate pattern between the conductive pattern and the plugging pattern, and protective layer patterns between the mold layers and the plugging pattern, wherein the protective layer patterns are separated by the intermediate pattern.
Abstract:
Semiconductor devices including a substrate including a cell array region and a through electrode region, an electrode stack on the substrate and including electrodes, vertical structures penetrating the electrode stack within the cell array region, vertical fence structures within an extension region and surrounding the through electrode region, and insulating layers being inside a perimeter defined by the vertical fence structures and being at the same level as the electrodes may be provided. The electrodes may include first protrusions protruding between the vertical fence structures in a plan view.
Abstract:
A non-volatile memory structure can include a substrate extending horizontally and a filling insulating pattern extending vertically from the substrate. A plurality of active channel patterns can extend vertically from the substrate in a zig-zag pattern around a perimeter of the filling insulating pattern, where each of the active channel patterns having a respective non-circular shaped horizontal cross-section. A vertical stack of a plurality of gate lines can each extend horizontally around the filling insulating pattern and the plurality of active channel patterns.
Abstract:
A non-volatile memory structure can include a substrate extending horizontally and a filling insulating pattern extending vertically from the substrate. A plurality of active channel patterns can extend vertically from the substrate in a zig-zag pattern around a perimeter of the filling insulating pattern, where each of the active channel patterns having a respective non-circular shaped horizontal cross-section. A vertical stack of a plurality of gate lines can each extend horizontally around the filling insulating pattern and the plurality of active channel patterns.
Abstract:
A memory device includes a plurality of channel regions that each extend in a direction perpendicular to an upper surface of a substrate, a plurality of gate electrode layers and a plurality of insulating layers stacked on the substrate adjacent the channel regions, each of the gate electrodes extending different lengths, and a plurality of dummy channel regions adjacent first ends of the plurality of gate electrode layers, wherein the substrate includes a substrate insulating layer formed below the plurality of dummy channel regions.
Abstract:
A semiconductor device includes a storage node contact on a substrate, and a lower electrode on the storage node contact, a lower sidewall of the lower electrode being covered by a contact residue of a same material as the storage node contact.
Abstract:
A method of thermally treating a wafer includes loading a wafer into a process chamber having one or more regions of uniform temperature gradient and one or more regions of non-uniform temperature gradient. A defect is detected in the wafer. The wafer is aligned to position the defect within one of the one or more regions of uniform temperature gradient. A rapid thermal process is performed on the wafer in the process chamber while the defect is positioned within one of the one or more regions of uniform temperature gradient.