Abstract:
A method of fabricating a semiconductor light-emitting device is provided that includes forming a first conductivity-type semiconductor layer, forming an active layer by alternately forming a plurality of quantum well layers grown at a first temperature and a plurality of quantum barrier layers grown at a second temperature higher than the first temperature, and forming a second conductivity-type semiconductor layer.
Abstract:
A refrigerator includes a main body provided with storage chambers having doors, one of the doors being provided with an opening, the opening having at least one stepped plane; a rack installed in the storage chamber at a height corresponding to that of the lower end of the opening; a sub door to open and close the opening; and a connection member to prevent a height difference between a rear surface of the sub door and the opening. The connection member is configured to slide relative to the sub door to cover the at least one stepped plane, whereby the connection member closes the at least one stepped plane when the sub door is closed, and opens the at least one stepped plane when the sub door is opened so that the rear surface of the sub door and the connection member form substantially a level plane with the rack.
Abstract:
A semiconductor light emitting device includes: n-type and p-type semiconductor layers; and an active layer disposed between the n-type and p-type semiconductor layers. The active layer has a structure in which a plurality of quantum well layers and a plurality of quantum barrier layers are alternately disposed, wherein the plurality of quantum well layers are made of AlxInyGa1-x-yN (0≦x
Abstract translation:半导体发光器件包括:n型和p型半导体层; 以及设置在n型和p型半导体层之间的有源层。 有源层具有多个量子阱层和多个量子势垒层交替设置的结构,其中多个量子阱层由Al x In y Ga 1-x-y N(0 @ x <1,0
Abstract:
In a refrigerator door in which a decoration member is mounted to a door frame using a foam material, the foam material fills a space formed between the decoration member mounted to a front side of the door frame and a rear panel mounted to a rear side of the door frame. Accordingly, the decoration member can be fixed to the door frame through direct contact with the foam material.
Abstract:
A semiconductor light emitting device includes: n-type and p-type semiconductor layers; and an active layer disposed between the n-type and p-type semiconductor layers. The active layer has a structure in which a plurality of quantum well layers and a plurality of quantum barrier layers are alternately disposed, wherein the plurality of quantum well layers are made of AlxInyGa1-x-yN (0≦x
Abstract translation:半导体发光器件包括:n型和p型半导体层; 以及设置在n型和p型半导体层之间的有源层。 有源层具有多个量子阱层和多个量子势垒层交替设置的结构,其中多个量子阱层由Al x In y Ga 1-x-y N(0&nlE; x <1,0
Abstract:
A semiconductor light emitting device including a first conductivity-type semiconductor layer; a second conductivity-type semiconductor layer; an active layer interposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, the active layer including at least one quantum well layer and at least one quantum barrier layer that are alternately stacked and form a multiple quantum well structure; at least one border layer in contact with the first conductivity-type semiconductor layer and interposed between the first conductivity-type semiconductor layer and the active layer, the at least one border layer having a band gap energy that decreases in a direction away from the first conductivity-type semiconductor layer; and at least one growth blocking layer interposed between the active layer and the border layer, the at least one growth blocking layer having a band gap energy equal to a band gap energy of the at least one quantum barrier layer.
Abstract:
A semiconductor light emitting device includes a substrate formed of a first material; and a convex portion protruding from the substrate and including: a first layer formed of the first material as that of the substrate; and a second layer formed of a second material different from the first material and disposed on the first layer. A second height of the second layer is greater than a first height of the first layer.
Abstract:
A method of forming a semiconductor layer is provided. The method includes forming a plurality of nanorods on a substrate and forming a lower semiconductor layer on the substrate so as to expose at least portions of the nanorods. The nanorods are removed so as to form voids in the lower semiconductor layer, and an upper semiconductor layer is formed on an upper portion of the lower semiconductor layer and the voids.
Abstract:
A refrigerator includes a main body provided with storage chambers having doors, one of the doors being provided with an opening, the opening having at least one stepped plane; a rack installed in the storage chamber at a height corresponding to that of the lower end of the opening; a sub door to open and close the opening; and a connection member to prevent a height difference between a rear surface of the sub door and the opening. The connection member is configured to slide relative to the sub door to cover the at least one stepped plane, whereby the connection member closes the at least one stepped plane when the sub door is closed, and opens the at least one stepped plane when the sub door is opened so that the rear surface of the sub door and the connection member form substantially a level plane with the rack.