Abstract:
A semiconductor device includes a plurality of semiconductor patterns stacked to be spaced apart from each other in a first direction, perpendicular to an upper surface of a substrate, and extending in a second direction, parallel to the upper surface of the substrate, a plurality of first conductive patterns extending in a third direction, perpendicular to the first direction and the second direction, on the plurality of semiconductor patterns, a plurality of second conductive patterns extending in the first direction on the substrate, a plurality of capacitors electrically connected to the plurality of semiconductor patterns, respectively, and at least one epitaxial layer disposed to be in contact with at least one of both end surfaces of at least one of the plurality of semiconductor patterns and including an impurity.
Abstract:
A method of fabricating a semiconductor device includes forming an interlayer insulating structure on a substrate, forming a contact hole that penetrates the interlayer insulating structure to expose the substrate, forming an amorphous silicon layer including a first portion and a second portion, the first portion covering a top surface of the substrate exposed by the contact hole, the second portion covering a sidewall of the contact hole, providing hydrogen atoms into the amorphous silicon layer, and crystallizing the first portion using the substrate as a seed.
Abstract:
An integrated circuit device includes: an active region extending in a first horizontal direction on a substrate; a first transistor at a first vertical level on the active region, the first transistor including a first source/drain region having a first conductive type; and a second transistor at a second vertical level that is higher than the first vertical level on the active region, the second transistor including a second source/drain region having a second conductive type and overlapping the first source/drain region in a vertical direction, wherein the first source/drain region and the second source/drain region have different sizes.
Abstract:
A method of fabricating a semiconductor device includes forming an interlayer insulating structure on a substrate, forming a contact hole that penetrates the interlayer insulating structure to expose the substrate, forming an amorphous silicon layer including a first portion and a second portion, the first portion covering a top surface of the substrate exposed by the contact hole, the second portion covering a sidewall of the contact hole, providing hydrogen atoms into the amorphous silicon layer, and crystallizing the first portion using the substrate as a seed.
Abstract:
A method of fabricating a semiconductor device includes forming an interlayer insulating structure on a substrate, forming a contact hole that penetrates the interlayer insulating structure to expose the substrate, forming an amorphous silicon layer including a first portion and a second portion, the first portion covering a top surface of the substrate exposed by the contact hole, the second portion covering a sidewall of the contact hole, providing hydrogen atoms into the amorphous silicon layer, and crystallizing the first portion using the substrate as a seed.
Abstract:
Provided is a method of fabricating a semiconductor device, the method including forming interconnection structures extending parallel to each other on a substrate; performing a coating process and forming a liquid state silicon source material layer filling an area between the interconnection structures; performing a first annealing process, curing the liquid state silicon source material layer, and forming an amorphous silicon layer; and crystallizing the amorphous silicon layer and forming contact plugs.
Abstract:
Semiconductor devices include lower interconnections, upper interconnections crossing over the lower interconnections, selection components disposed at crossing points of the lower interconnections and the upper interconnections, respectively, and memory components disposed between the selection components and the upper interconnections. Each of the selection components may include a semiconductor pattern having a first sidewall and a second sidewall. The first sidewall of the semiconductor pattern may have a first upper width and a first lower width that is greater than the first upper width. The second sidewall of the semiconductor pattern may have a second upper width and a second lower width that is substantially equal to the second upper width.
Abstract:
A method of fabricating a semiconductor device includes forming an interlayer insulating structure on a substrate, forming a contact hole that penetrates the interlayer insulating structure to expose the substrate, forming an amorphous silicon layer including a first portion and a second portion, the first portion covering a top surface of the substrate exposed by the contact hole, the second portion covering a sidewall of the contact hole, providing hydrogen atoms into the amorphous silicon layer, and crystallizing the first portion using the substrate as a seed.
Abstract:
A method of fabricating a semiconductor device includes forming an interlayer insulating structure on a substrate, forming a contact hole that penetrates the interlayer insulating structure to expose the substrate, forming an amorphous silicon layer including a first portion and a second portion, the first portion covering a top surface of the substrate exposed by the contact hole, the second portion covering a sidewall of the contact hole, providing hydrogen atoms into the amorphous silicon layer, and crystallizing the first portion using the substrate as a seed.
Abstract:
Provided is a method of forming a semiconductor device. The method can include loading a semiconductor substrate into semiconductor equipment. A base layer can be formed on the loaded semiconductor substrate by performing a base deposition process using a base source material. A first silicon layer can be formed on the base layer to a greater thickness than the base layer by performing a first silicon deposition process using a silicon source material different from the base source material. A first nitrided silicon layer can be formed by nitriding the first silicon layer using a first nitridation process. The semiconductor substrate having the first nitrided silicon layer can be unloaded from the semiconductor equipment.