Abstract:
During a command/address calibration mode, a memory controller may transmit multiple cycles of test patterns as signals to a memory device. Each cycle of test pattern signals may be transmitted at an adjusted relative phase with respect to a clock also transmitted to the memory device. The memory device may input the test pattern signals at a timing determined by the clock, such as rising and/or falling edges of the clock. The test pattern as input by the memory device may be sent to the memory controller to determine if the test pattern was successfully transmitted to the memory device during the cycle. Multiple cycles of test pattern transmissions are evaluated to determine a relative phase of command/address signals with respect to the clock for transmission during operation of the system.
Abstract:
During a command/address calibration mode, a memory controller may transmit multiple cycles of test patterns as signals to a memory device. Each cycle of test pattern signals may be transmitted at an adjusted relative phase with respect to a clock also transmitted to the memory device. The memory device may input the test pattern signals at a timing determined by the clock, such as rising and/or falling edges of the clock. The test pattern as input by the memory device may be sent to the memory controller to determine if the test pattern was successfully transmitted to the memory device during the cycle. Multiple cycles of test pattern transmissions are evaluated to determine a relative phase of command/address signals with respect to the clock for transmission during operation of the system.
Abstract:
During a command/address calibration mode, a memory controller may transmit multiple cycles of test patterns as signals to a memory device. Each cycle of test pattern signals may be transmitted at an adjusted relative phase with respect to a clock also transmitted to the memory device. The memory device may input the test pattern signals at a timing determined by the clock, such as rising and/or falling edges of the clock. The test pattern as input by the memory device may be sent to the memory controller to determine if the test pattern was successfully transmitted to the memory device during the cycle. Multiple cycles of test pattern transmissions are evaluated to determine a relative phase of command/address signals with respect to the clock for transmission during operation of the system.
Abstract:
During a command/address calibration mode, a memory controller may transmit multiple cycles of test patterns as signals to a memory device. Each cycle of test pattern signals may be transmitted at an adjusted relative phase with respect to a clock also transmitted to the memory device. The memory device may input the test pattern signals at a timing determined by the clock, such as rising and/or falling edges of the clock. The test pattern as input by the memory device may be sent to the memory controller to determine if the test pattern was successfully transmitted to the memory device during the cycle. Multiple cycles of test pattern transmissions are evaluated to determine a relative phase of command/address signals with respect to the clock for transmission during operation of the system.
Abstract:
During a command/address calibration mode, a memory controller may transmit multiple cycles of test patterns as signals to a memory device. Each cycle of test pattern signals may be transmitted at an adjusted relative phase with respect to a clock also transmitted to the memory device. The memory device may input the test pattern signals at a timing determined by the clock, such as rising and/or falling edges of the clock. The test pattern as input by the memory device may be sent to the memory controller to determine if the test pattern was successfully transmitted to the memory device during the cycle. Multiple cycles of test pattern transmissions are evaluated to determine a relative phase of command/address signals with respect to the clock for transmission during operation of the system.
Abstract:
During a command/address calibration mode, a memory controller may transmit multiple cycles of test patterns as signals to a memory device. Each cycle of test pattern signals may be transmitted at an adjusted relative phase with respect to a clock also transmitted to the memory device. The memory device may input the test pattern signals at a timing determined by the clock, such as rising and/or falling edges of the clock. The test pattern as input by the memory device may be sent to the memory controller to determine if the test pattern was successfully transmitted to the memory device during the cycle. Multiple cycles of test pattern transmissions are evaluated to determine a relative phase of command/address signals with respect to the clock for transmission during operation of the system.
Abstract:
During a command/address calibration mode, a memory controller may transmit multiple cycles of test patterns as signals to a memory device. Each cycle of test pattern signals may be transmitted at an adjusted relative phase with respect to a clock also transmitted to the memory device. The memory device may input the test pattern signals at a timing determined by the clock, such as rising and/or falling edges of the clock. The test pattern as input by the memory device may be sent to the memory controller to determine if the test pattern was successfully transmitted to the memory device during the cycle. Multiple cycles of test pattern transmissions are evaluated to determine a relative phase of command/address signals with respect to the clock for transmission during operation of the system.
Abstract:
An input receiver circuit including a single-to-differential amplifier and a semiconductor device including the input receiver circuit are disclosed. The input receiver circuit includes a first stage amplifier unit and a second stage amplifier unit. The first stage amplifier unit amplifies a single input signal in a single-to-differential mode to generate a differential output signal, without using a reference voltage. The second stage amplifier unit amplifies the differential output signal in a differential-to-single mode to generate a single output signal.
Abstract:
During a command/address calibration mode, a memory controller may transmit multiple cycles of test patterns as signals to a memory device. Each cycle of test pattern signals may be transmitted at an adjusted relative phase with respect to a clock also transmitted to the memory device. The memory device may input the test pattern signals at a timing determined by the clock, such as rising and/or falling edges of the clock. The test pattern as input by the memory device may be sent to the memory controller to determine if the test pattern was successfully transmitted to the memory device during the cycle. Multiple cycles of test pattern transmissions are evaluated to determine a relative phase of command/address signals with respect to the clock for transmission during operation of the system.
Abstract:
During a command/address calibration mode, a memory controller may transmit multiple cycles of test patterns as signals to a memory device. Each cycle of test pattern signals may be transmitted at an adjusted relative phase with respect to a clock also transmitted to the memory device. The memory device may input the test pattern signals at a timing determined by the clock, such as rising and/or falling edges of the clock. The test pattern as input by the memory device may be sent to the memory controller to determine if the test pattern was successfully transmitted to the memory device during the cycle. Multiple cycles of test pattern transmissions are evaluated to determine a relative phase of command/address signals with respect to the clock for transmission during operation of the system.