Abstract:
Provided is a hyperspectral imaging (HSI)-based inspection apparatus capable of quickly and stably performing two-dimensional (2D) HSI for an inspection object, and accordingly, capable of quickly and accurately inspecting the inspection object. The HSI-based inspection apparatus includes: a stage on which an inspection object is arranged; an optical system configured to allow light to be incident on the inspection object and emit the light reflected from the inspection object; a scan mirror configured to reflect the emitted light from the optical system while rotating; and a hyperspectral camera configured to obtain an image having a wavelength direction and a line direction as two axes for light reflected from the scan mirror, wherein, by using the rotation of the scan mirror, the hyperspectral camera is configured to perform the 2D HSI for the inspection object.
Abstract:
Provided are a method of inspecting a surface and a method of manufacturing a semiconductor device. The methods include preparing a substrate, selecting a spatial resolution of a first optical device by setting a magnification of an imaging optical system, emitting multi-wavelength light toward a first measurement area of the substrate and obtaining first wavelength-specific images, generating first spectrum data based on the first wavelength-specific images, generating first spectrum data of respective pixels based on the first wavelength-specific images, and extracting a spectrum of at least one first inspection area having a range of the first measurement area or less from the first spectrum data, and analyzing the spectrum. The first optical device includes a light source, an objective lens, a detector, and an imaging optical system. The obtaining first wavelength-specific images includes using the imaging optical system and the detector.
Abstract:
Provided is a method of inspecting a pattern defect. The method includes: applying a voltage to an object to be inspected and measuring an inspection signal generated in a pattern of the object to be inspected due to the voltage applied to the object to be inspected over time; generating an intensity image showing a relationship between an intensity of the inspection signal measured in the pattern and a time by processing the inspection signal; and detecting a pattern defect position by comparing the intensity image with a comparative intensity image.
Abstract:
Provided are a method of inspecting a surface and a method of manufacturing a semiconductor device. The methods include preparing a substrate, selecting a spatial resolution of a first optical device by setting a magnification of an imaging optical system, emitting multi-wavelength light toward a first measurement area of the substrate and obtaining first wavelength-specific images, generating first spectrum data based on the first wavelength-specific images, generating first spectrum data of respective pixels based on the first wavelength-specific images, and extracting a spectrum of at least one first inspection area having a range of the first measurement area or less from the first spectrum data, and analyzing the spectrum. The first optical device includes a light source, an objective lens, a detector, and an imaging optical system. The obtaining first wavelength-specific images includes using the imaging optical system and the detector.
Abstract:
An apparatus for manufacturing a semiconductor device is provided. The apparatus for manufacturing a semiconductor device may include a mass flow controller configured to control a flow of a process gas supplied to a process chamber, the mass flow controller configured to adjust an outflow rate of the process gas exiting the mass flow controller in response to a correction signal, the correction signal generated based on a difference between an inflow rate of the process gas flowing into the mass flow controller and a reference flow rate, a sensor configured to measure a chamber pressure inside the process chamber, an exhaust valve configured to adjust an exhaust speed of an exhaust gas exhausted from the process chamber; and a monitoring apparatus configured to detect a defect of the mass flow controller based on the correction signal, the chamber pressure, and the exhaust speed of the exhaust valve.
Abstract:
A conductive atomic force microscope including a plurality of probe structures each including a probe and a cantilever connected thereto, a power supplier applying a bias voltage, a current detector detecting a first current flowing between a sample object and each of the probes and a second current flowing between a measurement object and each of the probes, and calculating representative currents for the sample and measurement objects based on the first and second currents, respectively, and a controller calculating a ratio between representative currents of the sample object measured by each of the probe structures, calculating a scaling factor for scaling the representative current with respect to the measurement object measured by each of the probes, and determine a reproducible current measurement value based on the second measurement current and the scaling factor may be provided.
Abstract:
A method of inspecting a wafer includes performing a fabricating process on a wafer, irradiating broadband light on the wafer, such that the light is reflected from the wafer, generating a spectral cube by using the light reflected from the wafer, extracting a spectrum of a desired wafer inspection region from the spectral cube, and inspecting the desired wafer inspection region by analyzing the extracted spectrum.