摘要:
A nitride semiconductor light-emitting device includes an n type nitride semiconductor layer, a light-emitting layer formed on the n type nitride semiconductor layer, a first p type nitride semiconductor layer formed on the light-emitting layer, an intermediate layer formed on the first p type nitride semiconductor layer to alternately cover and expose a surface of the first p type nitride semiconductor layer, and a second p type nitride semiconductor layer formed on the intermediate layer. The intermediate layer is made of a compound containing Si and N as constituent elements.
摘要:
An object is to provide a method of manufacturing a nitride semiconductor light emitting device having high light emission output and allowing decrease in forward voltage (Vf). The invention is directed to a method of manufacturing a nitride semiconductor light emitting device including at least an n-type nitride semiconductor, a p-type nitride semiconductor and an active layer formed between the n-type nitride semiconductor and the p-type nitride semiconductor, wherein the n-type nitride semiconductor includes at least an n-type contact layer and an n-side GaN layer, the n-side GaN layer consists of a single or a plurality of undoped and/or n-type layers, and the method includes the step of forming the n-side GaN layer by organic metal vapor deposition with the growth temperature set within the range of 500 to 1000° C., such that the n-side GaN layer is formed between the n-type contact layer and the active layer.
摘要:
Provided is a method of manufacturing a nitride semiconductor light-emitting device including the step of contacting a surfactant material with the surface of an n-type nitride semiconductor layer or the surface of a p-type nitride semiconductor layer before the growth of an active layer, or, with a grown crystal surface during or after the growth of the active layer. According to this manufacturing method, a nitride semiconductor light-emitting device having higher light-emitting efficiency can be obtained.
摘要:
The present invention is a semiconductor light emitting device including an n-type semiconductor layer, an active layer, a first p-type semiconductor layer between the n-type semiconductor layer and the active layer, and a second p-type semiconductor layer on the opposite side of the first p-type semiconductor layer from the active layer. Further, the present invention is a nitride semiconductor light emitting device including an n-type nitride semiconductor layer, a nitride semiconductor active layer, a first p-type nitride semiconductor layer between the n-type nitride semiconductor layer and the nitride semiconductor active layer, and a second p-type nitride semiconductor layer on the opposite side of the first p-type nitride semiconductor layer from the nitride semiconductor active layer.
摘要:
A nitride semiconductor light-emitting device comprises a substrate, and a first n-type nitride semiconductor layer, an emission layer, a p-type nitride semiconductor layer, a metal layer and a second n-type nitride semiconductor layer stacked on the substrate successively from the side closer to the substrate, with an electrode provided on the surface of the second n-type nitride semiconductor layer or above the surface of the second n-type nitride semiconductor layer. The metal layer is preferably made of a hydrogen-storage alloy.
摘要:
The present invention presents a nitride semiconductor light emitting device including a substrate, a first n-type nitride semiconductor layer, a light emitting layer, a p-type nitride semiconductor layer, a p-type nitride semiconductor tunnel junction layer, an n-type nitride semiconductor tunnel junction layer, and a second n-type semiconductor layer, in which the p-type and n-type nitride semiconductor tunnel junction layers form a tunnel junction, at least one of the p-type and n-type nitride semiconductor tunnel junction layers contains In, at least one of In-containing layers contacts with a layer having a larger band gap than the In-containing layer, and at least one of shortest distances between an interface of the In-containing layer and the layer having a larger band gap and an interface of the p-type and n-type nitride semiconductor tunnel junction layers is less than 40 nm.
摘要:
A method of manufacturing a nitride semiconductor device includes the steps of forming a groove on a surface of a first substrate by scribing, and forming a nitride semiconductor layer on the surface where the groove is formed. In addition, the method includes the steps of bonding the nitride semiconductor layer and a second substrate together and separating the nitride semiconductor layer and the first substrate from each other. With this manufacturing method, a nitride semiconductor device can be obtained with high yield.
摘要:
A lighting device for growing a plant includes: not less than two sorts of semiconductor light-emitting element, each having a peak emission wavelength in a range of 380 nm to 500 nm, the not less than two sorts of semiconductor light-emitting element being different from each other in peak emission wavelength by not less than 5 nm; and a red fluorescent material which (i) is excited by light of at least one of the not less than two sorts of semiconductor light-emitting element and (ii) has a peak emission wavelength in a range of 600 nm to 780 nm.
摘要:
A nitride semiconductor light emitting diode includes at least an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer. The active layer is formed of one first nitride semiconductor layer having a highest In ratio in the light emitting diode. The light emitting diode further includes at least one of a second nitride semiconductor layer located between the active layer and the n-type nitride semiconductor layer and including an InGaN layer, and a third nitride semiconductor layer located between the active layer and the p-type nitride semiconductor layer and including an InGaN layer. Respective In (Indium) ratios of the InGaN layers included in the second nitride semiconductor layer and the InGaN layers included in the third nitride semiconductor layer are lower than the In ratio of the first nitride semiconductor layer forming the active layer. The LED with high luminous efficiency can thus be provided.
摘要:
A method of manufacturing a nitride semiconductor device includes the steps of forming a groove on a surface of a first substrate by scribing, and forming a nitride semiconductor layer on the surface where the groove is formed. In addition, the method includes the steps of bonding the nitride semiconductor layer and a second substrate together and separating the nitride semiconductor layer and the first substrate from each other. With this manufacturing method, a nitride semiconductor device can be obtained with high yield.