Abstract:
A recording head comprises a write pole extending to an air-bearing surface. A near-field transducer is positioned proximate a first side of the write pole in a down-track direction. A heatsink structure is proximate the near-field transducer and positioned between the near-field transducer and the write pole. The heatsink structure extends beyond the near-field transducer in a cross-track direction and extends in a direction normal to the air-bearing surface.
Abstract:
A recording head comprises a write pole extending to an air-bearing surface. A near-field transducer is positioned proximate a first side of the write pole in a down-track direction. A heatsink structure is proximate the near-field transducer and positioned between the near-field transducer and the write pole. The heatsink structure extends beyond the near-field transducer in a cross-track direction and extends in a direction normal to the air-bearing surface.
Abstract:
A recording head has a near-field transducer proximate a media-facing surface of the recording head. The near-field transducer extends a first distance away from the media-facing surface. A waveguide overlaps and delivers light to the near-field transducer. Two subwavelength focusing mirrors are at an end of the waveguide proximate the media-facing surface and extend a second distance away from the media-facing surface that is less than the first distance. The subwavelength mirrors are on opposite crosstrack sides of the near-field transducer and separated from each other by a crosstrack gap. The subwavelength focusing mirrors each include a first material at the media-facing surface; and a second material facing away from the media facing surface and in contact with the first material. The second material includes a plasmonic material, and the first material is more mechanically robust than the second material.
Abstract:
A near-field transducer has an enlarged portion with a layer of soft plasmonic material. A peg formed of a thermally robust plasmonic material includes an embedded part that is partially embedded within the enlarged portion and has an exposed surface facing away from the enlarged portion. An intersection between a lower edge of the enlarged portion and the embedded part has a discontinuity.
Abstract:
An apparatus comprises a slider having an air bearing surface (ABS) that is configured for heat-assisted magnetic recording and comprises a write pole and a near-field transducer. The near-field transducer comprises a peg, an enlarged portion, and a dielectric layer. The peg has a front surface proximate the ABS, an opposing back surface, a top surface facing the write pole, two side surfaces, and a bottom surface opposing the top surface. The enlarged portion surrounds a portion of the peg including the back surface and has a front edge facing the ABS, wherein the distance from the ABS to the front edge is larger than the distance from the ABS to the front surface. The dielectric layer is disposed on a portion of the top surface of the peg and extends from the back surface of the peg to the front edge.
Abstract:
An apparatus includes a waveguide that delivers energy from an energy source, a write pole located proximate the waveguide at a media-facing surface, and a near-field transducer located proximate the write pole in a down track direction. The near-field transducer includes an enlarged portion and a peg extending from the enlarged portion towards the media-facing surface. The peg comprises a taper facing away from the write pole, and the taper causes a reduced down track dimension of the peg near the media-facing surface.
Abstract:
An apparatus includes a waveguide that delivers energy from an energy source, a write pole located proximate the waveguide at a media-facing surface, and a near-field transducer located proximate the write pole in a down track direction. The near-field transducer includes an enlarged portion and a peg extending from the enlarged portion towards the media-facing surface. The peg comprises a taper facing away from the write pole, and the taper causes a reduced down track dimension of the peg near the media-facing surface.
Abstract:
A near-field transducer includes an enlarged region having a top side adjacent to a magnetic pole, a base side opposite the top side, and a circumference that extends from proximal to a media-facing surface to distal to a media-facing surface. The near-field transducer includes a peg region in contact with a region of the bas side of the enlarged region, the peg region extending from the enlarged region towards the media-facing surface. The near-field transducer also includes a heat sink region having a contact side, a base side, and a circumference that extends from proximal to the media-facing surface to distal from the media-facing surface. The contact side of the heat sink region is in thermal contact with both the peg region and at least a region of the base side of the enlarged region.
Abstract:
A recording head comprises a write pole extending to an air-bearing surface. A near-field transducer is positioned proximate a first side of the write pole in a down-track direction. A heatsink structure is proximate the near-field transducer and positioned between the near-field transducer and the write pole. The heatsink structure extends beyond the near-field transducer in a cross-track direction and extends in a direction normal to the air-bearing surface.
Abstract:
A recording head has a near-field transducer proximate a media-facing surface of the recording head. The near-field transducer extends a first distance away from the media-facing surface. A waveguide overlaps and delivers light to the near-field transducer. Two subwavelength focusing mirrors are at an end of the waveguide proximate the media-facing surface. The subwavelength mirrors are on opposite crosstrack sides of the near-field transducer and separated from each other by a crosstrack gap. The subwavelength focusing mirrors each include a first material at the media-facing surface and a liner that covers an edge of the mirror.