SEMICONDUCTOR STRUCTURE AND METHOD FOR FORMING THE SAME

    公开(公告)号:US20220199808A1

    公开(公告)日:2022-06-23

    申请号:US17226462

    申请日:2021-04-09

    摘要: A semiconductor structure and a method for forming the same are provided. In one form, a forming method includes: providing a base, a gate structure, a source-drain doping region, and an interlayer dielectric layer; removing the gate structure located in an isolation region to form an isolation opening and expose the top and side walls of a fin located in the isolation region; performing first ion-doping on the fin under the isolation opening to form an isolation doped region, a doping type of the isolation doped region being different from a doping type of the source-drain doping region; and filling the isolation opening with an isolation structure after the doping, the isolation structure straddling the fin of the isolation region. In embodiments and implementations of the present disclosure, the isolation doped region is formed, a doping concentration of inversion ions in the fin of the isolation region can thus be increased, and a barrier of a P-N junction formed by the source-drain doping region and the fin of the isolation region can be increased accordingly, to prevent the device from generating a conduction current in the fin of the isolation region during operation, thereby implementing isolation between the fin of the isolation region and the fin of other regions. Moreover, there is no need to perform a fin cut process. Hence the fin is made into a continuous structure, which helps prevent stress relief in the fin.

    METHOD FOR FORMING SEMICONDUCTOR STRUCTURE

    公开(公告)号:US20220199460A1

    公开(公告)日:2022-06-23

    申请号:US17520967

    申请日:2021-11-08

    摘要: A method for forming a semiconductor structure is provided. In one form, a method includes: providing a base, a dummy gate structure, a source-drain doped region, and an interlayer dielectric layer; removing the dummy gate structure located at an isolation region to form an isolation opening; performing first ion doping on a fin below the isolation opening, to form an isolation doped region, where a doping type of the isolation doped region is different from a doping type of the source-drain doped region; filling an isolation structure in the isolation opening; removing the remaining dummy gate structure, to form a gate opening; and forming a gate structure in the gate opening. In embodiments and implementations of the present disclosure, the isolation doped region with a doping type different from that of the source-drain doped region is formed, so that a doping concentration of opposite-type ions in the fin of the isolation region can be improved, thereby accordingly improving a potential energy barrier of a P-N junction formed by the source-drain doped region and the fin of the isolation region, to prevent a conduction current from being generated in the fin of the isolation region when a device is working, and implementing isolation between the fin in the isolation region and the fin in other regions. Moreover, there is no need to perform a fin cut process, so that the fin is a continuous structure, to prevent stress release in the fin.