Fluorescent sensing for evaluating fluid

    公开(公告)号:US12171535B2

    公开(公告)日:2024-12-24

    申请号:US17372933

    申请日:2021-07-12

    Abstract: Approaches for evaluating fluid based on fluorescent sensing is disclosed. In one approach, a nanoparticle injector is configured to inject nanoparticles into a fluid. A detector is configured to determine a presence of the nanoparticles in the fluid. The detector can include a radiation source configured to irradiate the fluid with a target radiation and a fluorescent meter configured to measure an amount of fluorescence emitted from the fluid irradiated with the radiation. A control unit is configured to determine the a set of attributes corresponding to the fluid as a function of the measured amount of fluorescence.

    Humidifier disinfection using ultraviolet light

    公开(公告)号:US12128149B2

    公开(公告)日:2024-10-29

    申请号:US17562358

    申请日:2021-12-27

    Abstract: Aspects of the invention provide a system for disinfecting a humidifier containing a volume of water. An enclosure, such as a humidifier, includes a first chamber, a second chamber, a humidifier component, a third chamber, and a control unit. The first chamber contains a volume of water and a portion of the water flows into the second chamber. A first set of ultraviolet radiation sources within the first chamber can be configured to generate UV-A radiation, while a second set of ultraviolet radiation sources within the second chamber can be configured to generate UV-C radiation. In operation, the humidifier component adjacent to the second chamber creates water vapor using the portion of the volume of water within the second chamber. The water vapor flows into a third chamber that contains the water vapor and releases the water vapor into the ambient.

    Controlling ultraviolet intensity over a surface of a light sensitive object

    公开(公告)号:US11375595B2

    公开(公告)日:2022-06-28

    申请号:US16595103

    申请日:2019-10-07

    Abstract: An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.

    Humidifier Disinfection Using Ultraviolet Light

    公开(公告)号:US20220118140A1

    公开(公告)日:2022-04-21

    申请号:US17562358

    申请日:2021-12-27

    Abstract: Aspects of the invention provide a system for disinfecting a humidifier containing a volume of water. An enclosure, such as a humidifier, includes a first chamber, a second chamber, a humidifier component, a third chamber, and a control unit. The first chamber contains a volume of water and a portion of the water flows into the second chamber. A first set of ultraviolet radiation sources within the first chamber can be configured to generate UV-A radiation, while a second set of ultraviolet radiation sources within the second chamber can be configured to generate UV-C radiation. In operation, the humidifier component adjacent to the second chamber creates water vapor using the portion of the volume of water within the second chamber. The water vapor flows into a third chamber that contains the water vapor and releases the water vapor into the ambient.

    Controlling light exposure of light sensitive object

    公开(公告)号:US11246266B2

    公开(公告)日:2022-02-15

    申请号:US17101245

    申请日:2020-11-23

    Abstract: An approach for controlling light exposure of a light sensitive object is described. Aspects of this approach involve using a first set of radiation sources to irradiate the object with visible radiation and infrared radiation. A second set of radiation sources spot irradiate the object in a set of locations with a target ultraviolet radiation having a range of wavelengths. Radiation sensors detect radiation reflected from the object and environment condition sensors detect conditions of the environment in which the object is located during irradiation. A controller controls irradiation of the light sensitive object by the first and second set of radiation sources according to predetermined optimal irradiation settings specified for various environmental conditions. In addition, the controller adjusts irradiation settings of the first and second set of radiation sources as a function of measurements obtained by the various sensors.

    Curing ultraviolet sensitive polymer materials

    公开(公告)号:US10907055B2

    公开(公告)日:2021-02-02

    申请号:US15422749

    申请日:2017-02-02

    Abstract: An approach for curing ultraviolet sensitive polymer materials (e.g., polymer inks, coatings, and adhesives) using ultraviolet radiation is disclosed. The ultraviolet sensitive polymer materials curing can utilize ultraviolet light at different wavelength emissions arranged in a random, mixed or sequential arrangement. In one embodiment, an ultraviolet light C (UV-C) radiation emitter having a set of UV-C sources that emit UV-C radiation at a predetermined UV-C duration and intensity operate in conjunction with an ultraviolet light B (UV-B) radiation emitter having a set of UV-B sources configured to emit UV-B radiation at a predetermined UV-B duration and intensity and/or an ultraviolet light A (UV-A) radiation emitter having a set of UV-A sources configured to emit UV-A radiation at a predetermined UV-A duration and intensity, to cure the ultraviolet sensitive polymer materials.

Patent Agency Ranking