摘要:
Disclosed are processes of making solutions of alkali alkoxides in their corresponding alcohols using an electrolytic process. In one embodiment, sodium methoxide in methanol is made from methanol and aqueous sodium hydroxide solution, where the aqueous sodium hydroxide solution is present in the anolyte compartment and a solution of sodium methoxide in methanol is present in the catholyte compartment, the two compartments are separated by a ceramic membrane that selectively transports sodium ions under the influence of an electric potential, and wherein the composition of the solution of sodium methoxide in methanol in the catholyte compartment of the electrolytic cell comprises between at least about 2% by weight sodium methoxide and at most about 20% by weight sodium methoxide.
摘要:
Disclosed are processes of making solutions of alkali alkoxides in their corresponding alcohols using an electrolytic process. In one embodiment, sodium methoxide in methanol is made from methanol and aqueous sodium hydroxide solution, where the aqueous sodium hydroxide solution is present in the anolyte compartment and a solution of sodium methoxide in methanol is present in the catholyte compartment, the two compartments are separated by a ceramic membrane that selectively transports sodium ions under the influence of an electric potential, and wherein the composition of the solution of sodium methoxide in methanol in the catholyte compartment of the electrolytic cell comprises between at least about 2% by weight sodium methoxide and at most about 20% by weight sodium methoxide.
摘要:
An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.
摘要:
An electrochemical method for the production of a chlorine-based oxidant product, such as sodium hypochlorite, is disclosed. The method may potentially be used to produce sodium hypochlorite from sea water or low purity un-softened or NaCl-based salt solutions. The method utilizes alkali cation-conductive ceramic membranes, such as membranes based on NaSICON-type materials, and organic polymer membranes in electrochemical cells to produce sodium hypochlorite. Generally, the electrochemical cell includes three compartments and the first compartment contains an anolyte having a basic pH.
摘要:
An article and method to provide protection in various environments. The article may include a metal substrate having a first coefficient of thermal expansion, a magnesium oxide-based layer having a second coefficient of thermal expansion, and a bond layer disposed between the metal substrate and the magnesium oxide-based layer. The bond layer may include a third coefficient of thermal expansion substantially intermediate the first and second coefficients of thermal expansion to facilitate thermal compatibility between the metal substrate and the magnesium oxide-based layer. Further, the magnesium oxide-based layer may be substantially non-porous, thereby providing a hermetic seal limiting gases, particulates, steam and fluid access to the metal substrate.
摘要:
An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.
摘要:
Systems and methods for recovering chlorine gas or an alkali metal from an electrolytic cell having an acid-intolerant, alkali-ion-selective membrane are disclosed. In some cases, the cell has an anolyte compartment and a catholyte compartment with an acid-intolerant, alkali-ion selective membrane separating the two. While a cathode is disposed within a catholyte solution in the catholyte compartment, a chlorine-gas-evolving anode is typically disposed within an aqueous alkali-chloride solution in the anolyte compartment. As current passes between the anode and cathode, chlorine ions in the anolyte solution can be oxidized to form chlorine gas. In some cases, the cell is configured so the chlorine gas is rapidly removed from the cell to inhibit a chemical reaction between the chlorine gas and the anolyte solution. In some cases, a vacuum or a heating system is used to increase the rate at which chlorine gas exits the cell. Other implementations are also described.
摘要:
Alkali bicarbonate is synthesized in an electrolytic cell from alkali carbonate. The electrolytic cell includes an alkali ion conductive membrane positioned between an anolyte compartment configured with an anode and a catholyte compartment configured with a cathode. The alkali conductive membrane selectively transports alkali ions and prevents the transport of anions produced in the catholyte compartment. An aqueous alkali carbonate solution is introduced into the anolyte compartment and electrolyzed at the anode to produce carbon dioxide and/or hydrogen ions which react with alkali carbonate to produce alkali bicarbonate. The alkali bicarbonate is recovered by filtration or other separation techniques. When the catholyte solution includes water, pure alkali hydroxide is produced. When the catholyte solution includes methanol, pure alkali methoxide is produced.
摘要:
A dialkyl or diaryl ether is produced by reacting carbon dioxide with a metal alcoholate having the formula, M(RO)x, where “M” is a Group 1, Group 2, or Group 3 metal; “x” is the valence of the metal M; “R” is a C1 to C6 lower alkyl or aryl, wherein the reaction produces a dialkyl or diaryl ether having a formula, R—O—R, and a metal carbonate having a formula M2CO3 where M is a Group 1 metal, MCO3 where M is a Group 2 metal, and M2(CO3)3 where M is a Group 3 metal. The metal carbonate may be removed by conventional means, such as filtration. The dialkyl or diaryl ether may be recovered and used as a fuel, fuel additive, propellant, or building block for other fuels or petrochemicals. In some cases the metal alcoholate is in an alcohol solution and the alcohol and metal carbonate are recycled to regenerate the metal alcoholate. A specific example of dimethyl ether production is disclosed.