Abstract:
A loop heat pipe system includes a loop heat pipe (LHP), a temperature sensor, a heater and a controller. The temperature sensor measures temperature of a working fluid portion of the LHP in which the working fluid has different phases depending on whether or not the LHP is in a disable status not to start up a heat transportation, in which a liquid phase of the working fluid does not exist in an evaporator of the LHP. The heater heats a heating target part of a vapor line. The controller, in order to start up the LHP, turns on the heater, monitors temperature of the heating target part using the temperature sensor, and turns off the heater when detecting a change in the monitored temperature, caused by condensation of a vapor phase of the working fluid.
Abstract:
A loop heat pipe includes: a first evaporator and a second evaporator each of which vaporizes a liquid-phase working fluid and converts the liquid-phase working fluid to a vapor-phase working fluid; a first condenser and a second condenser each of which condenses the vapor-phase working fluid and converts the vapor-phase working fluid back to the liquid-phase working fluid; a first vapor line through which the working fluid converted to the vapor phase is transported to the first condenser; a first liquid line through which the working fluid converted to the liquid phase is transported to the second evaporator; a second vapor line through which the working fluid converted to the vapor phase is transported to the second condenser; and a second liquid line through which the working fluid converted to the liquid phase is transported to the first evaporator.
Abstract:
There is provided a loop heat pipe which includes an evaporator that internally includes at least one wick built, a condenser, a liquid pipe and a vapor pipe that connect the evaporator and the condenser to each other, and a heat dispersion cavity that is formed inside the evaporator, and disperses a vapor, wherein the wick includes, a first wick that is porous, a second wick that is porous, the second wick being inserted into the first wick from the liquid pipe side and including a pore size larger than the first wick, and a vapor channel that is defined between the first wick and the second wick. The vapor channel is connected at an end on the liquid pipe side to the heat dispersion cavity.
Abstract:
There is provided a loop heat pipe which includes an evaporator that internally includes at least one wick built, a condenser, a liquid pipe and a vapor pipe that connect the evaporator and the condenser to each other, and a heat dispersion cavity that is formed inside the evaporator, and disperses a vapor, wherein the wick includes, a first wick that is porous, a second wick that is porous, the second wick being inserted into the first wick from the liquid pipe side and including a pore size larger than the first wick, and a vapor channel that is defined between the first wick and the second wick. The vapor channel is connected at an end on the liquid pipe side to the heat dispersion cavity.
Abstract:
A solution for removing an aluminum oxide film from an aluminum or aluminum alloy surface, which includes a salt or oxide of a metal capable of substituting aluminum, a solubilizing agent for ions of the metal, and an alkali, and which has a pH of 10 to 13.5. The removing solution makes it possible to form a film of the metal derived from the metal salt or oxide contained in the removing solution by dissolving away the oxide film from the aluminum or aluminum alloy surface at a low temperature and a high speed while restraining, as securely as possible, erosion of the aluminum or aluminum alloy surface. The removing solution ensures that even in the case where the thickness of the aluminum or aluminum alloy basis material is very small, the aluminum or aluminum alloy surface can be activated while assuredly leaving the aluminum or aluminum alloy basis material.
Abstract:
An optical coherence tomographic apparatus includes a unit configured to perform tracking of an eye to be examined based on a plurality of images of the eye which are obtained at different times, and a control unit configured to control the unit which performs the tracking in a case where a plurality of tomographic images of the eye are obtained.
Abstract:
A power tool (1) and a method of producing such power tool capable of improving dust proof performance with respect to a circuit board (33) and a stator coil (31B), and capable of securing cooling performance to the circuit board. The power tool includes a brushless motor (3) having a hollow stator (31), a rotor (32) positioned in an internal space of the stator, and a motor driver circuit connected to the stator. The stator includes a coil (31B) electrically connected to the mo- for driver circuit. The coil is coated with a coating agent (31D), and the motor driver circuit is covered with an insulation cover member (33D).
Abstract:
An optical coherence tomographic apparatus includes a unit configured to perform tracking of an eye to be examined based on a plurality of images of the eye which are obtained at different times, and a control unit configured to control the unit which performs the tracking in a case where a plurality of tomographic images of the eye are obtained.
Abstract:
When an anterior segment photographing mode is selected, ease of operation by an inspector is improved. An ophthalmologic apparatus includes an area changing unit for changing a movement area of an optical unit including an optical path of measuring light, when an anterior segment photographing mode for photographing an anterior segment of an eye to be inspected is selected, to be different from a movement area when a mode other than the anterior segment photographing mode is selected.
Abstract:
An electric power tool (1) includes a brushless direct-current motor (3) and a drive circuit that supplies drive power to the motor, the power tool rotates or drives a tool, whereby the drive circuit includes plural switching elements (21), and is arranged on a board (9) provided in a grip portion of a housing or below the grip portion; and an electric fan (22) is provided in the vicinity of the switching element for cooling the switching element.