GaN crystal substrate
    4.
    发明申请
    GaN crystal substrate 失效
    GaN晶体衬底

    公开(公告)号:US20070228400A1

    公开(公告)日:2007-10-04

    申请号:US11730649

    申请日:2007-04-03

    IPC分类号: H01L33/00

    摘要: A GaN crystal substrate has a crystal growth surface on which a crystal is grown, and a rear surface opposite to the crystal growth surface. The crystal growth surface has a roughness Ra(C)of at most 10 nm, and the rear surface has a roughness Ra(R) of at least 0.5 μand at most 10 μm. A ratio Ra(R)/Ra(C) of the surface roughness Ra(R) to the surface roughness Ra(C) is at least 50. Thus, a GaN crystal substrate of which front and rear surfaces are distinguishable from each other is provided, without impairing the morphology of a semiconductor layer grown on the GaN crystal substrate.

    摘要翻译: GaN晶体衬底具有生长晶体的晶体生长表面和与晶体生长表面相对的后表面。 晶体生长表面具有至多10nm的粗糙度Ra(C),并且后表面的粗糙度Ra(R)至少为0.5μm至多为10 妈妈 表面粗糙度Ra(R)与表面粗糙度Ra(C)的比值Ra(R)/ Ra(C) )为50.因此,提供了前后表面彼此区分的GaN晶体衬底,而不损害在GaN晶体衬底上生长的半导体层的形态。

    GaN crystal substrate
    6.
    发明授权
    GaN crystal substrate 失效
    GaN晶体衬底

    公开(公告)号:US07825409B2

    公开(公告)日:2010-11-02

    申请号:US11730649

    申请日:2007-04-03

    IPC分类号: H01L23/58

    摘要: A GaN crystal substrate has a crystal growth surface on which a crystal is grown, and a rear surface opposite to the crystal growth surface. The crystal growth surface has a roughness Ra(C)of at most 10 nm, and the rear surface has a roughness Ra(R) of at least 0.5 μm and at most 10 μm. A ratio Ra(R)/Ra(C) of the surface roughness Ra(R) to the surface roughness Ra(C) is at least 50. Thus, a GaN crystal substrate of which front and rear surfaces are distinguishable from each other is provided, without impairing the morphology of a semiconductor layer grown on the GaN crystal substrate.

    摘要翻译: GaN晶体衬底具有生长晶体的晶体生长表面和与晶体生长表面相对的后表面。 晶体生长面的粗糙度Ra(℃)为10nm以下,后表面的粗糙度Ra(R)为0.5μm以上且10μm以下。 表面粗糙度Ra(R)与表面粗糙度Ra(C)的比Ra(R)/ Ra(C)至少为50.因此,表面和背面彼此区分的GaN晶体基板是 而不损害在GaN晶体衬底上生长的半导体层的形态。

    Method of concentrating nanoparticles and method of deaggregating aggregated nanoparticles
    8.
    发明授权
    Method of concentrating nanoparticles and method of deaggregating aggregated nanoparticles 有权
    浓缩纳米颗粒的方法和聚集纳米粒子的聚集方法

    公开(公告)号:US08679341B2

    公开(公告)日:2014-03-25

    申请号:US11919076

    申请日:2006-05-08

    摘要: A method of concentrating nanoparticles, having the steps of: adding and mixing an extraction solvent with a nanoparticles-dispersion liquid that nanoparticles are dispersed in a dispersion solvent, thereby concentrating and extracting the nanoparticles into a phase of the extraction solvent, and removing the dispersion solvent by filter-filtrating a liquid of concentrated extract, in which the extraction solvent is substantially incompatible with the dispersion solvent, and the extract solvent can form an interface after the extraction solvent is mixed with the dispersion solvent and left the mixture still; further a method of deaggregating aggregated nanoparticles, having the steps of: applying two or more ultrasonic waves different in frequency to a liquid containing aggregated nanoparticles, and thereby fining and dispersing the aggregated nanoparticles.

    摘要翻译: 一种浓缩纳米颗粒的方法,具有以下步骤:将提取溶剂与纳米颗粒分散在分散溶剂中的纳米颗粒分散液相加并混合,从而将纳米颗粒浓缩并萃取到萃取溶剂的相中,并除去分散体 溶剂,其中提取溶剂与分散溶剂基本上不相容,并且萃取溶剂可以在萃取溶剂与分散溶剂混合后形成界面,并将混合物静置; 进一步解聚聚集的纳米颗粒的方法,具有以下步骤:将不同频率的两个或更多个超声波施加到含有聚集的纳米颗粒的液体上,从而使聚集的纳米颗粒澄清和分散。

    PHARMACEUTICAL MULTIMERIC PARTICLES, AND MANUFACTURING METHOD FOR SAME
    9.
    发明申请
    PHARMACEUTICAL MULTIMERIC PARTICLES, AND MANUFACTURING METHOD FOR SAME 审中-公开
    药用多功能颗粒及其制造方法

    公开(公告)号:US20130096097A1

    公开(公告)日:2013-04-18

    申请号:US13702205

    申请日:2011-06-07

    IPC分类号: A61K9/10

    摘要: [Problem] The purpose of the present invention is to provide organic particles containing pharmaceutical particles of which the particles are small and the particle size distribution is narrow, and a manufacturing method for the same.[Solution] Provided are pharmaceutical multimeric particles of which the particles are small and the particle size distribution is narrow and which are characterized in being obtained by pouring into water a solution of a pharmaceutical multimer dissolved in a water-miscible organic solvent, and a manufacturing method for the pharmaceutical multimeric particles. Pharmaceutical dimeric particles thereof are characterized in being obtained by pouring into water a solution of a compound represented by general formula (I) dissolved in a water-miscible organic solvent.

    摘要翻译: 本发明的目的是提供含有粒子小,粒径分布狭窄的药物粒子的有机粒子及其制造方法。 [解决方案]提供了颗粒小且粒度分布窄的药物多聚体颗粒,其特征在于通过将溶解在水混溶性有机溶剂中的药物多聚体的溶液倒入水中而获得, 药物多聚体颗粒的方法。 其特征在于通过将溶解在与水可混溶的有机溶剂中的通式(I)表示的化合物的溶液倒入水中而获得的药物二聚体颗粒。

    Nitride Semiconductor Light-Emitting Device and Nitride Semiconductor Light-Emitting Device Fabrication Method
    10.
    发明申请
    Nitride Semiconductor Light-Emitting Device and Nitride Semiconductor Light-Emitting Device Fabrication Method 审中-公开
    氮化物半导体发光器件和氮化物半导体发光器件制造方法

    公开(公告)号:US20100032644A1

    公开(公告)日:2010-02-11

    申请号:US12307586

    申请日:2008-03-28

    IPC分类号: H01L33/00 H01L21/20

    摘要: An active layer (17) is provided so as to emit light having an emission wavelength in the 440 nm to 550 nm band. A first-conductivity-type gallium nitride semiconductor region (13), the active layer (17), and a second-conductivity-type gallium nitride semiconductor region (15) are arranged along a predetermined axis (Ax). The active layer (17) includes a well layer composed of hexagonal InxGa1-xN (0.16≦x≦0.4, x: strained composition), with the indium fraction x represented by the strained composition. The m-plane of the hexagonal InxGa1-xN is oriented along the predetermined axis (Ax). The well-layer thickness is between greater than 3 nm and less than or equal to 20 nm. Having the well-layer thickness be over 3 nm makes it possible to fabricate light-emitting devices having an emission wavelength of over 440 nm.

    摘要翻译: 提供有源层(17)以发射具有440nm至550nm波段的发射波长的光。 第一导电型氮化镓半导体区域(13),有源层(17)和第二导电型氮化镓半导体区域(15)沿预定轴线(Ax)布置。 活性层(17)包括由六方晶系In x Ga 1-x N(0.16 <= x <= 0.4,x:应变组成)构成的阱层,其中铟组分x由应变组合物表示。 六边形In x Ga 1-x N的m面沿预定轴线(Ax)取向。 阱层厚度大于3nm且小于或等于20nm。 具有超过3nm的阱层厚度使得可以制造发射波长超过440nm的发光器件。