CMOS TRANSISTORS WITH STRESSED HIGH MOBILITY CHANNELS
    1.
    发明申请
    CMOS TRANSISTORS WITH STRESSED HIGH MOBILITY CHANNELS 有权
    具有强力高移动通道的CMOS晶体管

    公开(公告)号:US20120037998A1

    公开(公告)日:2012-02-16

    申请号:US12855738

    申请日:2010-08-13

    IPC分类号: H01L27/092 H01L21/20

    摘要: A p-type field effect transistor (PFET) having a compressively stressed channel and an n-type field effect transistor (NFET) having a tensilely stressed channel are formed. In one embodiment, a silicon-germanium alloy is employed as a device layer, and the source and drain regions of the PFET are formed employing embedded germanium-containing regions, and source and drain regions of the NFET are formed employing embedded silicon-containing regions. In another embodiment, a germanium layer is employed as a device layer, and the source and drain regions of the PFET are formed by implanting a Group IIIA element having an atomic radius greater than the atomic radius of germanium into portions of the germanium layer, and source and drain regions of the NFET are formed employing embedded silicon-germanium alloy regions. The compressive stress and the tensile stress enhance the mobility of charge carriers in the PFET and the NFET, respectively.

    摘要翻译: 形成具有压应力通道的p型场效应晶体管(PFET)和具有拉伸应力通道的n型场效应晶体管(NFET)。 在一个实施例中,使用硅 - 锗合金作为器件层,并且使用嵌入的含锗区域形成PFET的源极和漏极区域,并且使用嵌入的含硅区域形成NFET的源极和漏极区域 。 在另一个实施例中,锗层用作器件层,PFET的源极和漏极区通过将原子半径大于锗的原子半径的IIIA族元素注入到锗层的部分中而形成, 使用嵌入式硅 - 锗合金区域形成NFET的源极和漏极区域。 压应力和拉伸应力分别提高了PFET和NFET中载流子的迁移率。

    CMOS transistors with stressed high mobility channels
    2.
    发明授权
    CMOS transistors with stressed high mobility channels 有权
    具有应力高移动性通道的CMOS晶体管

    公开(公告)号:US08354694B2

    公开(公告)日:2013-01-15

    申请号:US12855738

    申请日:2010-08-13

    IPC分类号: H01L29/66

    摘要: A p-type field effect transistor (PFET) having a compressively stressed channel and an n-type field effect transistor (NFET) having a tensilely stressed channel are formed. In one embodiment, a silicon-germanium alloy is employed as a device layer, and the source and drain regions of the PFET are formed employing embedded germanium-containing regions, and source and drain regions of the NFET are formed employing embedded silicon-containing regions. In another embodiment, a germanium layer is employed as a device layer, and the source and drain regions of the PFET are formed by implanting a Group IIIA element having an atomic radius greater than the atomic radius of germanium into portions of the germanium layer, and source and drain regions of the NFET are formed employing embedded silicon-germanium alloy regions. The compressive stress and the tensile stress enhance the mobility of charge carriers in the PFET and the NFET, respectively.

    摘要翻译: 形成具有压应力通道的p型场效应晶体管(PFET)和具有拉伸应力通道的n型场效应晶体管(NFET)。 在一个实施例中,使用硅 - 锗合金作为器件层,并且使用嵌入的含锗区域形成PFET的源极和漏极区域,并且使用嵌入的含硅区域形成NFET的源极和漏极区域 。 在另一个实施例中,锗层用作器件层,PFET的源极和漏极区通过将原子半径大于锗的原子半径的IIIA族元素注入到锗层的部分中而形成, 使用嵌入式硅 - 锗合金区域形成NFET的源极和漏极区域。 压应力和拉伸应力分别提高了PFET和NFET中载流子的迁移率。

    COMPOSITIONALLY-GRADED BAND GAP HETEROJUNCTION SOLAR CELL
    3.
    发明申请
    COMPOSITIONALLY-GRADED BAND GAP HETEROJUNCTION SOLAR CELL 有权
    组合梯形带隙异质细胞

    公开(公告)号:US20120031476A1

    公开(公告)日:2012-02-09

    申请号:US12849966

    申请日:2010-08-04

    IPC分类号: H01L31/0352 H01L31/18

    摘要: A photovoltaic device includes a composition modulated semiconductor structure including a p-doped first semiconductor material layer, a first intrinsic compositionally-graded semiconductor material layer, an intrinsic semiconductor material layer, a second intrinsic compositionally-graded semiconductor layer, and an n-doped first semiconductor material layer. The first and second intrinsic compositionally-graded semiconductor material layers include an alloy of a first semiconductor material having a greater band gap width and a second semiconductor material having a smaller band gap with, and the concentration of the second semiconductor material increases toward the intrinsic semiconductor material layer in the first and second compositionally-graded semiconductor material layers. The photovoltaic device provides an open circuit voltage comparable to that of the first semiconductor material, and a short circuit current comparable to that of the second semiconductor material, thereby increasing the efficiency of the photovoltaic device.

    摘要翻译: 光伏器件包括组成调制的半导体结构,其包括p掺杂的第一半导体材料层,第一本征成分梯度半导体材料层,本征半导体材料层,第二本征组分梯度半导体层和n掺杂的第一半导体层 半导体材料层。 第一和第二本征成分梯度半导体材料层包括具有较大带隙宽度的第一半导体材料和具有较小带隙的第二半导体材料的合金,并且第二半导体材料的浓度朝向本征半导体 第一和第二组成梯度半导体材料层中的材料层。 光电器件提供与第一半导体材料相当的开路电压,以及与第二半导体材料相当的短路电流,从而提高光伏器件的效率。

    Compositionally-graded band gap heterojunction solar cell
    4.
    发明授权
    Compositionally-graded band gap heterojunction solar cell 有权
    组分梯度带隙异质结太阳能电池

    公开(公告)号:US08653360B2

    公开(公告)日:2014-02-18

    申请号:US12849966

    申请日:2010-08-04

    IPC分类号: H01L31/00 H01L21/00

    摘要: A photovoltaic device includes a composition modulated semiconductor structure including a p-doped first semiconductor material layer, a first intrinsic compositionally-graded semiconductor material layer, an intrinsic semiconductor material layer, a second intrinsic compositionally-graded semiconductor layer, and an n-doped first semiconductor material layer. The first and second intrinsic compositionally-graded semiconductor material layers include an alloy of a first semiconductor material having a greater band gap width and a second semiconductor material having a smaller band gap with, and the concentration of the second semiconductor material increases toward the intrinsic semiconductor material layer in the first and second compositionally-graded semiconductor material layers. The photovoltaic device provides an open circuit voltage comparable to that of the first semiconductor material, and a short circuit current comparable to that of the second semiconductor material, thereby increasing the efficiency of the photovoltaic device.

    摘要翻译: 光伏器件包括组成调制的半导体结构,其包括p掺杂的第一半导体材料层,第一本征成分梯度半导体材料层,本征半导体材料层,第二本征组分梯度半导体层和n掺杂的第一半导体层 半导体材料层。 第一和第二本征成分梯度半导体材料层包括具有较大带隙宽度的第一半导体材料和具有较小带隙的第二半导体材料的合金,并且第二半导体材料的浓度朝向本征半导体 第一和第二组成梯度半导体材料层中的材料层。 光电器件提供与第一半导体材料相当的开路电压,以及与第二半导体材料相当的短路电流,从而提高光伏器件的效率。

    SELECTIVE EPITAXIAL GROWTH BY INCUBATION TIME ENGINEERING
    8.
    发明申请
    SELECTIVE EPITAXIAL GROWTH BY INCUBATION TIME ENGINEERING 审中-公开
    选择性外来成长通过孵化时间工程

    公开(公告)号:US20120295417A1

    公开(公告)日:2012-11-22

    申请号:US13109567

    申请日:2011-05-17

    IPC分类号: H01L21/20

    摘要: A method of controlling the nucleation rate (i.e., incubation time) of dissimilar materials in an epitaxial growth chamber that can favor high growth rates and can be compatible with low temperature growth is provided. The nucleation rate of dissimilar materials is controlled in an epitaxial growth chamber by altering the nucleation rate for the growth of a given material film, relative to single crystal growth of the same material film, by choosing an appropriate masking material with a given native nucleation characteristic, or by modifying the surface of the masking layer to achieve the appropriate nucleation characteristic. Alternatively, nucleation rate control can be achieved by modifying the surface of selected areas of a semiconductor substrate relative to other areas in which an epitaxial semiconductor material will be subsequently formed.

    摘要翻译: 提供了一种控制外延生长室中不同材料的成核速率(即孵育时间)的方法,其可以有利于高生长速率并且可以与低温生长相容。 通过选择具有给定的天然成核特性的合适的掩蔽材料,通过相对于相同材料膜的单晶生长改变给定材料膜的生长的成核速率,在外延生长室中控制不同材料的成核速率 ,或通过改变掩模层的表面以获得适当的成核特性。 或者,可以通过相对于其后将形成外延半导体材料的其它区域修改半导体衬底的选定区域的表面来实现成核速率控制。