Abstract:
The present disclosure generally relates to processes, apparatuses and custom catalysts designed to depolymerize a polymer. In one embodiment, the present invention relates to a de-polymerizing apparatus, catalysts and reaction schemes to obtain useful monomers including fuel products by “in situ” reactions using coupled electromagnetic induction.
Abstract:
The present invention provides a method of recycling a plastic thereby forming a narrow spectrum of hydrocarbons having from 4 to 14 carbon atoms that can be directly used as gasoline without additional processing or refining. The method includes the step of feeding the plastic, selected from the group of polyethylene, polypropylene, polystyrene, and combinations thereof, into a heated vessel for melting. The method also includes the step of decomposing the plastic at a temperature of from 400° C. to 500° C. in the presence of a metallocene catalyst and a zeolitic catalyst thereby forming the hydrocarbons having from 4 to 14 carbon atoms. The metallocene catalyst includes dichlorobis(2-methylindenyl)zirconium (IV). The zeolitic catalyst includes ammonium Y zeolite and has a pore size of from 1 to 4 Angstroms.
Abstract:
The present invention is directed to a polyester resin for use in a coating composition. The polyester resin is the reaction product of a first compound comprising a plurality of hydroxyl groups, a lactone compound, a carboxylic acid anhydride, an epoxy compound having at least one epoxy group, and a carbamate compound. The present invention is also directed to a coating composition including the polyester resin and to a method of preparing the resin.
Abstract:
The present invention provides a method of recycling a plastic thereby forming a narrow spectrum of hydrocarbons having from 4 to 14 carbon atoms that can be directly used as gasoline without additional processing or refining. The method includes the step of feeding the plastic, selected from the group of polyethylene, polypropylene, polystyrene, and combinations thereof, into a heated vessel for melting. The method also includes the step of decomposing the plastic at a temperature of from 400° C. to 500° C. in the presence of a metallocene catalyst and a zeolitic catalyst thereby forming the hydrocarbons having from 4 to 14 carbon atoms. The metallocene catalyst includes dichlorobis(2-methylindenyl)zirconium (IV). The zeolitic catalyst includes ammonium Y zeolite and has a pore size of from 1 to 4 Angstroms.
Abstract:
A curable coating composition comprises (a) a compound having two types of functionality, functionality A and functionality B, that react in curing the coating, (b) a second material having functionality C that reacts with functionality A in curing the coating, and (c) a crosslinker having a plurality of functional groups D that react at least with functionality B in curing the coating. Functional groups D may also react with functionality C and/or with a functional group formed as a result of the reaction of functionality C with functionality A. The curable coating composition is applied to a substrate and cured under conditions appropriate for reactions of the functionalities A, B, C, and D.
Abstract:
The present invention is directed to a polyester polycarbamate polymeric pigment dispersant to be used as a grind resin to incorporate pigment into pigment dispersions for coating compositions. The pigment dispersant is the reaction product of a first compound having a plurality of hydroxyl groups, a carboxylic acid anhydride, a second compound having at least one epoxy group, and a carbamate compound. The present invention is also directed to a method of preparing the pigment dispersant.
Abstract:
A coating composition for producing films having improved scratch and mar characteristics. The coating composition incorporates a polyester polycarbamate resin composition, a first cross-linking agent, and a cross-linkable resin to form the film. The resin composition is the reaction product of a first compound having a plurality of hydroxyl groups with a carbamate compound reactive with the hydroxyl groups of the first compound and added in an amount sufficient to form a carbamated intermediary. The carbamated intermediary has at least one primary carbamate group available for cross-linking and has unreacted hydroxyl groups. Then, a silyl compound having a terminal isocyanate group is reacted with the unreacted hydroxyl groups of the carbamated intermediary. The silyl compound also has silylalkoxy groups available for secondary cross-linking. The first cross-linking agent and the cross-linkable resin react with the primary carbamate groups and the silylalkoxy groups, respectively, to produce the film having improved scratch and mar characteristics.
Abstract:
Disclosed is a method for making nongelled addition polymers, especially carbamate functional additional polymers from linear unsaturated anhydrides. The method comprises reacting an unsaturated linear anhydride with an active hydrogen compound to provide two monomers comprising polymerizable C═C bonds, at least one of said monomers comprising an acid functional group; polymerizing the polymerizable C═C bonds of the two monomers to provide an acid functional polymerization product; and reacting the acid functional polymerization product with an epoxy functional compound to provide a nongelled addition polymer, wherein the disclosed method does not include a step comprising the physical removal of any acid functional monomers or polymerization products. Also disclosed is a curable coating composition containing the resulting carbamate functional polymer, as well as a coated substrate comprising a cured film resulting from the application and curing of the disclosed curable coating composition.
Abstract:
The thermosetting, non-polymeric coating composition includes at least one monomeric material having a plurality of carbamate and/or urea groups, at least one crosslinker reactive with the at least one monomeric material, and a sag control agent that is a crystalline reaction product of an amine and an isocyanate.
Abstract:
An acrylic composition, or star acrylic polymer, includes the reaction product of an initiator, a first compound, and a highly-branched, polyfunctional core molecule. The initiator has a radical-forming portion and a functional group. The first compound, which includes a vinyl functional group, is reactive with the initiator to form a functionalized intermediate. The core molecule is reactive with the functionalized intermediate to form the acrylic composition. A method of forming the acrylic composition via free-radical polymerization includes the steps of reacting the initiator and the first compound to form the functionalized intermediate, and reacting the core molecule with the functionalized intermediate to form the acrylic composition.