Abstract:
An optical coupler of the present disclosure includes a plurality of one-input multiple-output multimode interference input parts provided for each laser beam of the plurality of laser light beams. The optical coupler further includes one light output port configured to allow three laser light beams to be coupled and emitted therethrough, a plurality of light input side optical waveguides configured to extend from each of the plurality of one-input multiple-output multimode interference input parts, a light output side optical waveguide configured to extend from the light output port, and an optical coupling part configured to have the plurality of light input side optical waveguides and the light output side optical waveguide connected thereto.
Abstract:
A power feeding coil unit includes a first power feeding coil and a second power feeding coil that generate a first magnetic flux, a first auxiliary coil that generates a second magnetic flux interlinking with the first power feeding coil, and a second auxiliary coil that generates a third magnetic flux interlinking with the second power feeding coil. An axial direction of the first auxiliary coil is nonparallel to an axial direction of the first power feeding coil, and an axial direction of the second auxiliary coil is nonparallel to an axial direction of the second power feeding coil. A direction of circulation of the second and third magnetic fluxes are opposite to a direction of circulation of the first magnetic flux.
Abstract:
The present invention provides a contactless power transmission circuit which is capable of narrowing a fluctuation extent of an output voltage output by a power receiving coil via a rectifier circuit. The contactless power transmission circuit controls a period of an alternating voltage output from a driving circuit based on a smaller one of either of a first command value and a second command value. Here, the first command value is one based on a difference between a detected value of the output voltage from the rectifier circuit and a target value. The second command value is one calculated based on a difference between a detected value of a transmission current flowing through the power transmitting coil and a target value.
Abstract:
A power feeding coil unit includes a power feeding coil, and an auxiliary coil. The auxiliary coil is arranged not to interlink with a magnetic flux that interlinks with a power receiving coil that is arranged to face the power feeding coil during power feeding. An axial direction of the auxiliary coil is nonparallel to an opposing direction of the power feeding coil and the power receiving coil. A direction of circulation of a magnetic flux generated by the auxiliary coil is opposite to a direction of circulation of a magnetic flux generated by the power feeding coil.
Abstract:
A DC-DC converter is configured with a voltage-source power converter at a primary side of a transformer, a current-source power converter at a secondary side of the transformer, and a controller. First and second voltage detection circuits respectively detect first and second voltages of the voltage-source and the current-source power converters. A current detection circuit detects an input-output current of the current-source power converter. The controller controls the voltage-source and the current-source power converters to transfer power between the primary side and the secondary side of the transformer. The controller includes a calculation unit that performs calculations based on the first voltage, the second voltage and the input-output current, and a table unit that include a plurality of parameter sets. The calculation unit performs the calculations based on one of the plurality of parameter sets that is selected from the table unit.
Abstract:
A plasma generator capable of adjusting the amount of plasma generation in a simple configuration includes a control circuit controlling a frequency of an AC power supplied to a piezoelectric transformer and a control signal generation circuit providing a control signal to the control circuit. The plasma generator is configured so that the control signal output from the control signal generation circuit is appropriately adjusted. The control circuit controls the frequency of the AC power so as to bring a target value, which is set based on the control signal provided from the control signal generation circuit.
Abstract:
A power transmission device, which is used for a contactless power transmission to a movable body moving on a travelling surface in a power transmission direction parallel to the travelling surface, including a power transmission coil and a shielding plate, wherein, the power transmission coil is installed so that a coil surface is approximately vertical to the travelling surface, and at least a part of the shielding plate is disposed inside the region on the travelling surface sandwiched between a plane surface defined by a coil surface of the power transmission coil and a plane surface defined by a coil surface of a power receiving coil mounted on the movable body.
Abstract:
A coil which maintains a balance of a parasitic capacitance and has a structure that can be multilayered. The coil is stacked with a structure which includes winding wire portions formed of a wire wound for several turns in a plane in each layer, wherein winding wire portions in each layer include a first winding portion formed by performing a single turn of winding in each layer in a same winding direction from a bottom layer to an uppermost layer, and a second winding portion formed by performing a single turn of winding in each layer in a same winding direction from the uppermost layer to the bottom layer, and the winding directions of the first and second winding portions are identical to each other and the first winding portion and the second winding portion are joined in the uppermost layer or the bottom layer.