Abstract:
The present invention relates to a shaped product being excellent in isotropy constituted by a fiber-reinforced composite material in which discontinuous reinforcing fibers are isotropic in a plane and are two-dimensionally oriented in the thermoplastic resin, the reinforcing fibers contained in the shaped product includes a reinforcing fiber bundle (A) constituted by the reinforcing fibers of the critical single fiber number defined by formula (1) or more, a ratio of the reinforcing fiber bundle (A) to the total amount of the reinforcing fibers in the shaped product is 20 vol % or more and less than 90 vol %, and the average number (N) of the reinforcing fibers in the reinforcing fiber bundle (A) satisfies formula (2): Critical single fiber number=600/D (1) 0.7×104/D2
Abstract:
The present invention provides a method for manufacturing a shaped product constituted by a fiber-reinforced composite material including reinforcing fibers and a thermoplastic resin. The shaped product maintains isotropy of the fibers to the end thereof even if press-molded under conditions in which charge ratio of a prepreg to a die is low. Specifically, the method includes using a specific prepreg obtained by impregnating the reinforcing fibers with thermoplastic resin, and molding-processing the prepreg under specific conditions.
Abstract:
There is provided a shaped product made of a fiber-reinforced composite material including reinforcing fibers having an average length of 5 mm or more and 100 mm or less and a thermoplastic resin, in which a volume fraction of reinforcing fibers (Vf=100×volume of reinforcing fibers/(volume of reinforcing fibers+volume of thermoplastic resin)) is 5 to 80%, grains are formed on a surface of the shaped product, and a ratio of a reinforcing fiber bundle (A) including the reinforcing fibers of a critical number of single fiber or more, the critical number defined by Formula (1), to the total amount of the reinforcing fibers is 20 Vol % or more and 99 Vol % or less: Critical number of single fiber=600/D (1) (wherein D is an average fiber diameter (μm) of single reinforcing fiber).
Abstract:
The present invention provides a method for manufacturing a shaped product constituted by a fiber-reinforced composite material including reinforcing fibers and a thermoplastic resin. The shaped product maintains isotropy of the fibers to the end thereof even if press-molded under conditions in which charge ratio of a prepreg to a die is low. Specifically, the method includes using a specific prepreg obtained by impregnating the reinforcing fibers with thermoplastic resin, and molding-processing the prepreg under specific conditions.
Abstract:
This method for manufacturing a shaped product is characterized in preparing a specific random mat including a thermoplastic resin and carbon fiber bundles having an average fiber length of 5-100 mm, impregnating a thermoplastic resin into the random mat, pressing the random mat in a metal mold in a range of 0.1-20 MPa, and then taking out the random mat from the metal mold.
Abstract:
There is provided a shaped product made of a fiber-reinforced composite material including reinforcing fibers having an average fiber length of 5 to 100 mm and a thermoplastic resin. In the shaped product, a volume fraction of reinforcing fibers is 5 to 80%, a reference plane (S) and a standing plane (B) inclined at an angle of 45 to 90 degrees with respect to the reference plane are included, a ratio of an area of the standing plane (B) to an area of the reference plane (S) is 0.5 to 100, and in the fiber-reinforced composite material constituting the shaped product, a ratio of a reinforcing fiber bundle (A) including the reinforcing fibers of a critical number of single fiber or more to the total amount of the reinforcing fibers is 20 Vol % or more and 99 Vol % or less.
Abstract:
A molded product, including a fiber-reinforced composite material containing reinforcing fibers having an average fiber length of 5 mm to 100 mm and a thermoplastic resin, wherein the molded product has thickness gradient, an amount of the thermoplastic resin is 10 to 1,000 parts by weight per 100 parts by weight of thee reinforcing fibers, and the reinforcing fibers have a fiber areal weight of from 25 g/m2 to 3,000 g/m2 and are substantially two-dimensionally randomly oriented.
Abstract translation:一种模制品,其包含纤维增强复合材料,其含有平均纤维长度为5mm至100mm的增强纤维和热塑性树脂,其中所述模塑产品具有厚度梯度,所述热塑性树脂的量为10至1,000份 每100重量份的增强纤维的重量,并且增强纤维的纤维面积重量为25g / m 3至3,000g / m 2,并且基本上二维随机取向。
Abstract:
There is provided a shaped product made of a fiber-reinforced composite material including reinforcing fibers having an average length of 5 mm or more and 100 mm or less and a thermoplastic resin, in which a volume fraction of reinforcing fibers (Vf=100×volume of reinforcing fibers/(volume of reinforcing fibers+volume of thermoplastic resin)) is 5 to 80%, grains are formed on a surface of the shaped product, and a ratio of a reinforcing fiber bundle (A) including the reinforcing fibers of a critical number of single fiber or more, the critical number defined by Formula (1), to the total amount of the reinforcing fibers is 20 Vol % or more and 99 Vol % or less: Critical number of single fiber=600/D (1) (wherein D is an average fiber diameter (μm) of single reinforcing fiber).
Abstract:
This method for manufacturing a shaped product is characterized in preparing a specific random mat including a thermoplastic resin and carbon fiber bundles having an average fiber length of 5-100 mm, impregnating a thermoplastic resin into the random mat, pressing the random mat in a metal mold in a range of 0.1-20 MPa, and then taking out the random mat from the metal mold.
Abstract:
The present invention provides a method for manufacturing a shaped product constituted by a fiber-reinforced composite material including reinforcing fibers and a thermoplastic resin, the shaped product with maintained isotropy of the fibers to the end thereof even if press-molded under conditions in which charge ratio of a prepreg to a die is low. Specifically, the method includes using a specific prepreg obtained by impregnating the reinforcing fibers with thermoplastic resin, and molding-processing the prepreg under specific conditions.