High strength silicon nitride sintered body and process for producing
same
    1.
    发明授权
    High strength silicon nitride sintered body and process for producing same 失效
    高强度硅氮化物烧结体及其生产方法

    公开(公告)号:US5234642A

    公开(公告)日:1993-08-10

    申请号:US459398

    申请日:1989-12-29

    IPC分类号: C04B35/597

    CPC分类号: C04B35/597

    摘要: A high-strength silicon nitride sintered body having a flexural strength of 100 kg/mm.sup.2 or higher and a process for producing the same are disclosed, the sintered body comprising not less than 90% by weight of a single crystalline phase of silicon aluminum oxynitride (Si.sub.6-z Al.sub.2 O.sub.z N.sub.8-z, wherein z is a number of from 0 to 4.2) having an average longer diameter of not more than 5 .mu.m and an aspect ratio of not less than 5, the crystal phase constituting a network structure in the sintered body, the balance being a crystalline or amorphous (glassy) phase comprising one or more of oxides or oxynitrides of a rare earth metal, a group 3A metal, a group 2A metal or Si, and the process comprising mixing silicon nitride powder, an organic metal salt as a first sintering aid, and at least one of a metal oxide, a metal nitride, and a metal oxynitride as a second sintering aid, either separately or as a mixture of two or more thereof, with a solvent and a surface active agent, subjecting the mixture or mixtures to ultrasonic dispersion, mixing the mixtures together followed by drying to obtain a mixed powder, molding the mixed powder, and sintering the molded article at a temperature of from 1,600.degree. to 2,200.degree. C. in a non-oxidative atmosphere.

    High strength silicon nitride sintered body and process for producing
same
    2.
    发明授权
    High strength silicon nitride sintered body and process for producing same 失效
    高强度氮化硅烧结体及其制造方法

    公开(公告)号:US5328876A

    公开(公告)日:1994-07-12

    申请号:US995703

    申请日:1992-12-23

    IPC分类号: C04B35/597 C04B35/58

    CPC分类号: C04B35/597

    摘要: A high-strength silicon nitride sintered body having a flexural strength of 100 kg/mm.sup.2 or higher and a process for producing the same are disclosed, the sintered body comprising not less than 90% by weight of a single crystalline phase of silicon aluminum oxynitride (Si.sub.6-z Al.sub.2 O.sub.z N.sub.8-z, wherein z is a number of from 0 to 4.2) having an average longer diameter of not more than 5 .mu.m and an aspect ratio of not less than 5, the crystal phase constituting a network structure in the sintered body, the balance being a crystalline or amorphous (glassy) phase comprising one or more of oxides or oxynitrides of a rare earth metal, a group 3A metal, a group 2A metal or Si, and the process comprising mixing silicon nitride powder, an organic metal salt as a first sintering aid, and at least one of a metal oxide, a metal nitride, and a metal oxynitride as a second sintering aid, either separately or as a mixture of two or more thereof, with a solvent and a surface active agent, subjecting the mixture or mixtures to ultrasonic dispersion, mixing the mixtures together followed by drying to obtain a mixed powder, molding the mixed powder, and sintering the molded article at a temperature of from 1,600.degree. C. to 2,200.degree. C. in a non-oxidative atmosphere.

    摘要翻译: 公开了一种弯曲强度为100kg / mm 2以上的高强度氮化硅烧结体及其制造方法,所述烧结体包含不小于90重量%的氮化硅铝的单晶相( Si6-zAl2OzN8-z,其中z为0-4.2的数),平均长度不大于5μm,纵横比不小于5,构成烧结体网状结构的晶相 余量为包含稀土金属,3A族金属,2A族金属或Si族的氧化物或氮氧化物中的一种或多种的结晶或无定形(玻璃质)相,并且该方法包括将氮化硅粉末,有机金属 盐作为第一烧结助剂,以及作为第二烧结助剂的金属氧化物,金属氮化物和金属氮氧化物中的至少一种,分别地或作为其两种或多种的混合物与溶剂和表面活性剂 对混合物进行处理 或与超声分散体的混合物,将混合物混合在一起,然后干燥以获得混合粉末,模塑混合粉末,并在非氧化性气氛中在1600℃至2200℃的温度下烧结该模制品。

    Process for production of sintered silicon nitride made article
    3.
    发明授权
    Process for production of sintered silicon nitride made article 失效
    制造烧结氮化硅制品的方法

    公开(公告)号:US5225127A

    公开(公告)日:1993-07-06

    申请号:US829571

    申请日:1992-02-03

    IPC分类号: C04B35/593

    CPC分类号: C04B35/5935

    摘要: There is provided a process for the production of a sintered article which comprises steps ofshaping a raw material powder comprising silicon nitride,thermally treating a shaped article in a non-oxidizing atmosphere at a temperature of 1300.degree. to 1650.degree. C. for at least 2 hours to form .beta.-silicon nitride of not less than 85% calculated from X-ray diffraction patterns and to increase a relative density of the article to not less than 80%, preferably to 80 to 85 %, andsintering the thermally treated article at a temperature of 1700.degree. to 2000.degree. C.

    摘要翻译: 提供了一种生产烧结制品的方法,该方法包括以下步骤:使含有氮化硅的原料粉末成形,在1300℃至1650℃的温度下在非氧化性气氛中对成形制品进行热处理,至少 2小时以形成由X射线衍射图计算的不小于85%的β-氮化硅,并将制品的相对密度提高至不小于80%,优选至80至85%,并将热处理物品 在1700〜2000℃的温度下

    Silicon nitride sintered body and process for producing the same
    4.
    发明授权
    Silicon nitride sintered body and process for producing the same 失效
    氮化硅烧结体及其制造方法

    公开(公告)号:US5275772A

    公开(公告)日:1994-01-04

    申请号:US957506

    申请日:1992-10-05

    CPC分类号: C04B35/5935 C04B35/597

    摘要: The present invention relates to a silicon nitride sintered body [wherein the composition of Si.sub.3 N.sub.4 -first aid (Y.sub.2 O.sub.3 +MgO)-second aid (at least one of Al.sub.2 O.sub.3 and AlN)] falls within a range defined by lines joining points A, B, C and D in FIG. 1, the crystal phase of the sintered body contains both .alpha.-Si.sub.3 N.sub.4 and .beta.'-sialon, and the relative density is 98% or more. This sintered body is produced by subjecting a green compact of the above-described source to primary sintering in a nitrogen gas atmosphere at 1300 to 1700.degree. C. so that the relative density reaches 96% or more, and the precipitation ratio of the .alpha.-Si.sub.3 N.sub.4 crystal phases to the .beta.'-sialon crystal phase in the sintered body is in the range of from 40:60 to 80:20; and then subjecting the primary sintered body to secondary sintering in a nitrogen gas atmosphere at 1300 to 1700.degree. C. so that the relative density reaches 98% or more. The sintered body has superior strength properties, especially at ordinary temperatures, and can be produced with a high productivity in a high yield at a low cost.

    摘要翻译: 本发明涉及一种氮化硅烧结体[其中,Si 3 N 4 - 急救(Y 2 O 3 + MgO) - 辅助剂(Al 2 O 3和AlN中的至少一种)的组成]落在由连接点A,B, C和D。 如图1所示,烧结体的结晶相含有α-Si 3 N 4和β'-Sialon,相对密度为98%以上。 该烧结体是通过使上述源的生坯在1300〜1700℃的氮气气氛中进行一次烧结而制成的,使得相对密度达到96%以上, Si3N4晶相与烧结体中的β' - 赛隆结晶相的比例范围为40:60至80:20; 然后在1300〜1700℃的氮气气氛中使一次烧结体进行二次烧结,使得相对密度达到98%以上。 该烧结体具有优异的强度特性,特别是在普通温度下,可以低成本高产率地以高生产率生产。

    Silicon nitride sintered body and process for producing the same
    6.
    发明授权
    Silicon nitride sintered body and process for producing the same 失效
    硅氮化物烧结体及其制造方法

    公开(公告)号:US5204297A

    公开(公告)日:1993-04-20

    申请号:US825989

    申请日:1992-01-27

    IPC分类号: C04B35/593 C04B35/597

    CPC分类号: C04B35/5935 C04B35/597

    摘要: The present invention relates to a silicon nitride sintered body [wherein the composition of Si.sub.3 N.sub.4 -first aid (Y.sub.2 O.sub.3 +MgO)-second aid (at least one of Al.sub.2 O.sub.3 and AlN)] falls within a range defined by lines joining points A, B, C and D in FIG. 1, the crystal phase of the sintered body contains both .alpha.-Si.sub.3 N.sub.4 and .beta.'-sialon, and the relative density is 98% or more. This sintered body is produced by subjecting a green compact of the above-described source to primary sintering in a nitrogen gas atmosphere at 1300.degree. to 1700.degree. C. so that the relative density reaches 96% or more, and the precipitation ratio of the .alpha.-Si.sub.3 N.sub.4 crystal phases to the .beta.'-sialon crystal phase in the sintered body is in the range of from 40:60 to 80:20; and then subjecting the primary sintered body to secondary sintering in a nitrogen gas atmosphere at 1300.degree. to 1700.degree. C. so that the relative density reaches 98% or more. The sintered body has superior strength properties, especially at ordinary temperatures, and can be produced with a high productivity in a high yield at a low cost.

    Silicon nitride sintered body and process for producing the same
    7.
    发明授权
    Silicon nitride sintered body and process for producing the same 失效
    硅氮化物烧结体及其制造方法

    公开(公告)号:US5173458A

    公开(公告)日:1992-12-22

    申请号:US810723

    申请日:1991-12-18

    IPC分类号: C04B35/593

    CPC分类号: C04B35/5935

    摘要: Disclosed is a silicon nitride sintered body produced by subjecting a green compact of a mixed powder composed of 1) a silicon nitride powder having a percentage .alpha. crystallization of 93% or more and a mean grain diameter of 0.7 .mu.m or less and 2) 5 to 15% by weight in total of a first sintering aid selected from among rare earth element, yttrium oxide and lanthanide oxides and a second sintering aid consisting of aluminum oxide or nitride and at least one selected from among oxides and nitrides of Mg, Ca and Li, to primary sintering in a nitrogen gas atmosphere under a pressure of 1.1 atm or less at 1500.degree. to 1700.degree. C.; and subjecting the sintered body to secondary sintering in a nitrogen gas atmosphere under a pressure of 10 atm or more at the primary sintering temperature or below, thereby giving a sintered body wherein the relative density of the sintered body is 99% or more and the precipitation ratio of an .alpha.-Si.sub.3 N.sub.4 (including .beta.'-sialon) crystal phase ranges from 1:3 to 1:8 in terms of the peak intensity ratio in X-ray diffraction.

    Electromagnetic actuator and valve-open-close mechanism

    公开(公告)号:US06566990B2

    公开(公告)日:2003-05-20

    申请号:US09729348

    申请日:2000-12-05

    IPC分类号: H01F708

    摘要: To lighten the weight of an electromagnetic actuator and a valve-open-close mechanism by forming the stems from a lighter material than conventional. A pair of electromagnets formed of stators and coils are opposed to each other with a gap therebetween. An armature is disposed in the gap so as to be reciprocable between one electromagnet and the other electromagnet by the electromagnets. A first stem for transmitting the movement of the armature from one electromagnet toward the other electromagnet to a valve of the internal combustion engine is inserted in a guide hole formed in the stator of one electromagnet. The first stem is formed of a lighter material than the armature to lighten the weight of the electromagnetic actuator and a valve-open-close mechanism of an internal combustion engine.

    Electromagnetic actuator and valve-open-close mechanism
    9.
    发明授权
    Electromagnetic actuator and valve-open-close mechanism 失效
    电磁执行器和开阀机构

    公开(公告)号:US06367433B2

    公开(公告)日:2002-04-09

    申请号:US09731027

    申请日:2000-12-07

    IPC分类号: F01L904

    摘要: A valve-open-close mechanism is proposed which has parts designed to reduce friction during sliding. The electromagnetic actuator comprises a pair of electromagnets each having a stator and a coil opposed to each other with a gap therebetween, an armature disposed in the gap, and a first stem for transmitting to external the movement of said armature. A retainer and a first return spring are provided on the valve. A second stem is provided at other side of the armature and another retainer and a second return spring are provided for the second stem. A coating film is formed on at least one of the surface or end face of the stem portion of the valve, end faces of the first return spring or second return spring, spring bearing end faces of the retainers, surface or end face of the second stem, and the surface of the armature.

    摘要翻译: 提出了一种阀门开闭机构,其具有旨在减少滑动期间的摩擦的部件。 电磁致动器包括一对电磁体,每个电磁体具有彼此相对的定子和线圈,间隔开的电枢,设置在间隙中的电枢和用于向外部传递所述电枢的运动的第一杆。 在阀上设有保持器和第一复位弹簧。 第二杆设置在电枢的另一侧,为第二杆提供另一保持器和第二复位弹簧。 在阀的杆部的表面或端面中的至少一个上形成涂膜,第一复位弹簧或第二复位弹簧的端面,保持器的弹簧支承端面,第二复位弹簧的表面或端面 杆和电枢的表面。

    Method of machining silicon nitride ceramics and silicon nitride
ceramics products
    10.
    发明授权
    Method of machining silicon nitride ceramics and silicon nitride ceramics products 失效
    氮化硅陶瓷和氮化硅陶瓷制品的加工方法

    公开(公告)号:US5297365A

    公开(公告)日:1994-03-29

    申请号:US921255

    申请日:1992-07-29

    CPC分类号: B24B19/22 B24B1/00

    摘要: An industrially feasible method of grinding silicon nitride ceramics, is disclosed and provides a sufficiently smooth surface. Namely, the surface has a maximum height-roughness Rmax of 0.1 microns or less and a ten-point mean roughness Rz of 0.05 microns. Further, with this method, surface damage can be repaired while grinding. The vertical cutting feed rate of a grinding wheel into a workpiece should be within the range of 0.005-0.1 micron for each rotation of the working surface of the wheel and change linearly or stepwise. The cutting speed of the grinding wheel in a horizontal (rotational) direction should be within the range of 25 to 75 m/sec. With this arrangement, the contact pressure and grinding heat that is generated between the workpiece and the hard abrasive grains during grinding are combined. In other words, mechanical and thermal actions are combined.

    摘要翻译: 公开了一种工业上可行的研磨氮化硅陶瓷的方法,并提供了足够光滑的表面。 即,表面的最大高度粗糙度Rmax为0.1微米以下,十点平均粗糙度Rz为0.05微米。 此外,通过该方法,可以在磨削时修复表面损伤。 砂轮进入工件的垂直切削进给速率应在车轮工作表面的每次旋转时在0.005-0.1微米的范围内,并且线性或逐步改变。 砂轮在水平(旋转)方向上的切割速度应在25至75米/秒的范围内。 通过这种布置,在磨削期间在工件和硬磨粒之间产生的接触压力和磨削热被组合。 换句话说,组合了机械和热动作。