摘要:
A stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the reaction Si+2/y MxOy→2x/y M+SiO2 is positive 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor maintains a constant threshold voltage even after high temperature processes during CMOS integration.
摘要翻译:高k栅极电介质和金属栅极结构的堆叠包括下部金属层,清除金属层和上部金属层。 清除金属层满足以下两个标准:1)反应Si + 2 / y MxOy→2x / y M + SiO2的吉布斯自由能变化为正的金属(M)2)具有更负的金属 每个氧原子吉布斯自由能用于形成氧化物,而不是下金属层的材料和上金属层的材料。 符合这些标准的清除金属层随着氧原子通过栅电极向高k栅极电介质扩散而捕获氧原子。 此外,清除金属层远远地降低了高k电介质下面的氧化硅界面层的厚度。 结果,即使在CMOS积分期间的高温处理之后,总栅极电介质的等效氧化物厚度(EOT)减小,并且场效应晶体管保持恒定的阈值电压。
摘要:
A semiconductor device includes: a semiconductor substrate; a PFET formed on the substrate, the PFET includes a SiGe layer disposed on the substrate, a high-K dielectric layer disposed on the SiGe layer, a first metallic layer disposed on the high-k dielectric layer, a first intermediate layer disposed on the first metallic layer, a second metallic layer disposed on the first intermediate layer, a second intermediate layer disposed on the second metallic layer, and a third metallic layer disposed on the second intermediate layer; an NFET formed on the substrate, the NFET includes the high-k dielectric layer, the high-k dielectric layer being disposed on the substrate, the second intermediate layer, the second intermediate layer being disposed on the high-k dielectric layer, and the third metallic layer, the third metallic layer being disposed on the second intermediate layer. Alternatively, the first metallic layer is omitted. A method to fabricate the device includes providing SiO2 and alpha-silicon layers or a dBARC layer.
摘要:
A structure has a semiconductor substrate and an nFET and a pFET disposed upon the substrate. The pFET has a semiconductor SiGe channel region formed upon or within a surface of the semiconductor substrate and a gate dielectric having an oxide layer overlying the channel region and a high-k dielectric layer overlying the oxide layer. A gate electrode overlies the gate dielectric and has a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer. The metal layer scavenges oxygen from the substrate (nFET) and SiGe (pFET) interface with the oxide layer resulting in an effective reduction in Tinv and Vt of the pFET, while scaling Tiny and maintaining Vt for the nFET, resulting in the Vt of the pFET becoming closer to the Vt of a similarly constructed nFET with scaled Tinv values.
摘要:
A stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the reaction Si+2/y MxOy→2x/y M+SiO2 is positive 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor maintains a constant threshold voltage even after high temperature processes during CMOS integration.
摘要翻译:高k栅极电介质和金属栅极结构的堆叠包括下部金属层,清除金属层和上部金属层。 清除金属层满足以下两个标准:1)反应Si + 2 / y MxOy→2x / y M + SiO2的吉布斯自由能变化为正的金属(M)2)具有更负的金属 每个氧原子吉布斯自由能用于形成氧化物,而不是下金属层的材料和上金属层的材料。 符合这些标准的清除金属层随着氧原子通过栅电极向高k栅极电介质扩散而捕获氧原子。 此外,清除金属层远远地降低了高k电介质下面的氧化硅界面层的厚度。 结果,即使在CMOS积分期间的高温处理之后,总栅极电介质的等效氧化物厚度(EOT)减小,并且场效应晶体管保持恒定的阈值电压。
摘要:
A semiconductor device includes: a semiconductor substrate; a PFET formed on the substrate, the PFET includes a SiGe layer disposed on the substrate, a high-K dielectric layer disposed on the SiGe layer, a first metallic layer disposed on the high-k dielectric layer, a first intermediate layer disposed on the first metallic layer, a second metallic layer disposed on the first intermediate layer, a second intermediate layer disposed on the second metallic layer, and a third metallic layer disposed on the second intermediate layer; an NFET formed on the substrate, the NFET includes the high-k dielectric layer, the high-k dielectric layer being disposed on the substrate, the second intermediate layer, the second intermediate layer being disposed on the high-k dielectric layer, and the third metallic layer, the third metallic layer being disposed on the second intermediate layer. Alternatively, the first metallic layer is omitted. A method to fabricate the device includes providing SiO2 and alpha-silicon layers or a dBARC layer.
摘要:
A semiconductor structure includes a high mobility semiconductor, an interfacial oxide layer, a high dielectric constant (high-k) layer, a stack, a gate electrode, and a gate dielectric. The stack comprises a lower metal layer, a scavenging metal layer comprising a scavenging metal, and an upper metal layer formed on the scavenging metal layer. A Gibbs free energy change of a chemical reaction, in which an atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer combines with a metal oxide material comprising the scavenging metal and oxygen to form the scavenging metal in elemental form and oxide of the atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer, is positive.
摘要:
A high mobility semiconductor layer is formed over a semiconductor substrate. An interfacial oxide layer is formed over the high mobility semiconductor layer. A high dielectric constant (high-k) dielectric layer is formed over the interfacial oxide layer. A stack is formed over the high-k dielectric layer. The stack comprises a lower metal layer, a scavenging metal layer comprising a scavenging metal, and an upper metal layer formed on the scavenging metal layer. A Gibbs free energy change of a chemical reaction, in which an atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer combines with a metal oxide material comprising the scavenging metal and oxygen to form the scavenging metal in elemental form and oxide of the atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer, is positive. A gate electrode and a gate dielectric are formed.
摘要:
A stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the reaction Si+2/y MxOy→2x/y M+SiO2 is positive 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor maintains a constant threshold voltage even after high temperature processes during CMOS integration.
摘要翻译:高k栅极电介质和金属栅极结构的堆叠包括下部金属层,清除金属层和上部金属层。 清除金属层满足以下两个标准:1)反应Si + 2 / y MxOy→2x / y M + SiO2的吉布斯自由能变化为正的金属(M)2)具有更负的金属 每个氧原子吉布斯自由能用于形成氧化物,而不是下金属层的材料和上金属层的材料。 符合这些标准的清除金属层随着氧原子通过栅电极向高k栅极电介质扩散而捕获氧原子。 此外,清除金属层远远地降低了高k电介质下面的氧化硅界面层的厚度。 结果,即使在CMOS积分期间的高温处理之后,总栅极电介质的等效氧化物厚度(EOT)减小,并且场效应晶体管保持恒定的阈值电压。
摘要:
A stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the reaction Si+2/y MxOy→2x/y M+SiO2 is positive 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor maintains a constant threshold voltage even after high temperature processes during CMOS integration.
摘要翻译:高k栅极电介质和金属栅极结构的堆叠包括下部金属层,清除金属层和上部金属层。 清除金属层满足以下两个标准:1)反应Si + 2 / y MxOy→2x / y M + SiO2的吉布斯自由能变化为正的金属(M)2)具有更负的金属 每个氧原子吉布斯自由能用于形成氧化物,而不是下金属层的材料和上金属层的材料。 符合这些标准的清除金属层随着氧原子通过栅电极向高k栅极电介质扩散而捕获氧原子。 此外,清除金属层远远地降低了高k电介质下面的氧化硅界面层的厚度。 结果,即使在CMOS积分期间的高温处理之后,总栅极电介质的等效氧化物厚度(EOT)减小,并且场效应晶体管保持恒定的阈值电压。
摘要:
A quarter-gap p-type field effect transistor (PFET) formed by gate-last fabrication includes a gate stack formed on a silicon substrate, the gate stack including: a high-k dielectric layer located on the silicon substrate; and a gate metal layer located over the high-k dielectric layer, the gate metal layer including titanium nitride and having a thickness of about 20 angstroms; and a metal contact formed over the gate stack. A quarter-gap n-type field effect transistor (NFET) formed by gate-last fabrication includes a gate stack formed on a silicon substrate, the gate stack including: a high-k dielectric layer located on the silicon substrate; and a first gate metal layer located over the high-k dielectric layer, the first gate metal layer including titanium nitride; and a metal contact formed over the gate stack.