Abstract:
An abstracted digital memory acquisition circuit, including an analog input configured to receive an analog signal, an analog-to-digital converter configured to receive the analog signal and convert the analog signal to a first digital signal, a digital input configured to receive a second digital signal, a controller configured to receive the first digital signal and the second digital signal and output a stream of bits, the stream of bits including the first digital signal and the second digital signal, and a control signal, and an output configured to electrically connect to a digital input of a test and measurement instrument and output the stream of bits and the control signal.
Abstract:
A test system includes a test and measurement instrument having one or more inputs for receiving one or more signals to be measured or tested, a display for outputting measurement results or test results, one or more processors for operating the instrument, a chassis housing the instrument, a power connection to receive power for powering the one or more processors from a wall connection. The test system further includes an external battery pack separate from the test and measurement instrument and structured to mechanically and electrically couple to and decouple from the test and measurement instrument, the external battery pack including a DC power source for powering the one or more processors. The test and measurement instrument includes no batteries or other power storage device for powering the one or more processors within the chassis of the instrument.
Abstract:
A method can include receiving an input signal having multiple signal edges, performing an initial scan of the input signal to identify peaks corresponding to the signal edges, and determining whether each peak is a Uniformly Synchronous (US) edge or a Quasi-Synchronous (QS) edge. The method can also include generating a final waveform and displaying the final waveform on a display device.
Abstract:
Rising and falling edges captured by a digital acquisition device appear to chatter on the X-axis by two or more sampling bin boundaries as live acquisition continually updates. This leads to a confusing display of limited usefulness. Averaging of multiple edges eliminates chatter while at the same time increases timing accuracy of the edges beyond the abilities of the base acquisition system. An object of the invention is to display a waveform for an averaged digital signal converted from an analog signal received by a signal processing instrument. A plurality of data acquisitions is stored in memory, and for each data acquisition, a number of rising and falling edges are identified. Each rising and falling edge is counted in each data acquisition. From these counted edges, an average waveform is calculated from the plurality of data acquisitions. The average waveform is displayed as an improved representation of the digital signal.
Abstract:
A method can include receiving an input signal having multiple signal edges, performing an initial scan of the input signal to identify peaks corresponding to the signal edges, and determining whether each peak is a Uniformly Synchronous (US) edge or a Quasi-Synchronous (QS) edge. The method can also include generating a final waveform and displaying the final waveform on a display device.