Abstract:
An insulating layer formed by deposition is annealed in the presence of radical oxygen to reduce bond defects. A substrate is provided. An oxide layer is deposited overlying the substrate. The oxide layer has a plurality of bond defects. The oxide layer is annealed in the presence of radical oxygen to modify a substantial portion of the plurality of bond defects by using oxygen atoms. The anneal, in one form, is an in-situ steam generation (ISSG) anneal. In one form, the insulating layer overlies a layer of charge storage material, such as nanoclusters, that form a gate structure of a semiconductor storage device. The ISSG anneal repairs bond defects by oxidizing defective silicon bonds in the oxide layer when the oxide layer is silicon dioxide.
Abstract:
A method of making a semiconductor device includes a substrate having a semiconductor layer having a first portion for non-volatile memory and a second portion exclusive of the first portion. A first dielectric layer is formed on the semiconductor layer. A plasma nitridation is performed on the first dielectric layer. A first plurality of nanoclusters is formed over the first portion and a second plurality of nanoclusters over the second portion. The second plurality of nanoclusters is removed. A second dielectric layer is formed over the semiconductor layer. A conductive layer is formed over the second dielectric layer.
Abstract:
An oxide layer formed by deposition is subject to a treatment process to repair bond defects of the oxide layer. In one embodiment, the layer is treated with nitric oxide. In one embodiment, a nitric oxide gas is flowed over the dielectric layer at an elevated temperature. In still another embodiment, the oxide layer is treated with fluorine. A layer is deposited over the oxide layer and a species containing fluorine is ion implanted into the layer. The wafer is heated where the species is driven to the oxide layer.
Abstract:
A method of making a semiconductor device includes a substrate having a semiconductor layer having a first portion for non-volatile memory and a second portion exclusive of the first portion. A first dielectric layer is formed on the semiconductor layer. A plasma nitridation is performed on the first dielectric layer. A first plurality of nanoclusters is formed over the first portion and a second plurality of nanoclusters over the second portion. The second plurality of nanoclusters is removed. A second dielectric layer is formed over the semiconductor layer. A conductive layer is formed over the second dielectric layer.
Abstract:
A method of making a semiconductor device includes a substrate having a semiconductor layer having a first portion for non-volatile memory and a second portion exclusive of the first portion. A first dielectric layer is formed over the semiconductor layer. A first plurality of nanoclusters is formed over the first portion and a second plurality of nanoclusters is formed over the second portion. A layer of nitrided oxide is formed around each nanocluster of the first plurality and the second plurality of nanoclusters. Remote plasma nitridation is performed on the layers of nitrided oxide of the first plurality of nanoclusters. The nanoclusters are removed from the second portion. A second dielectric layer is formed over the semiconductor layer. A conductive layer is formed over the second dielectric layer.
Abstract:
A method for making a semiconductor device is provided which comprises (a) providing a semiconductor structure equipped with a gate and a channel region, said channel region being associated with the gate; (b) depositing a first sub-layer (131) of a first stressor material over the semiconductor structure, said first stressor material containing silicon-nitrogen bonds and imparting tensile stress to the semiconductor structure; (c) curing the first stressor material through exposure to a radiation source; (d) depositing a second sub-layer (133) of a second stressor material over the first sub-layer, said second stressor material containing silicon-nitrogen bonds and imparting tensile stress to the semiconductor structure; and (e) curing the second sub-layer of stressor material through exposure to a radiation source.
Abstract:
A method and apparatus are described for integrating dual gate oxide (DGO) transistor devices (50, 52) and core transistor devices (51, 53) on a single substrate (15) having a silicon germanium channel layer (21) in the PMOS device areas (112, 113), where each DGO transistor device (50, 52) includes a metal gate (25), an upper gate oxide region (60, 84) formed from a second, relatively higher high-k metal oxide layer (24), and a lower gate oxide region (58, 84) formed from a first relatively lower high-k layer (22), and where each core transistor device (51, 53) includes a metal gate (25) and a core gate dielectric layer (72, 98) formed from only the second, relatively higher high-k metal oxide layer (24).
Abstract:
A transistor structure of an electronic device can include a gate dielectric layer and a gate electrode. The gate electrode can have a surface portion between the gate dielectric layer and the rest of the gate electrode. The surface portion can be formed such that another portion of the gate electrode primarily sets the effective work function in the finished transistor structure.
Abstract:
A method for making a semiconductor device is provided which comprises (a) providing a semiconductor structure equipped with a gate (209) and a channel region, said channel region being associated with the gate; (b) depositing a first sub-layer (231) of a first stressor material over the semiconductor structure, said first stressor material containing silicon- nitrogen bonds and imparting tensile stress to the semiconductor structure; (c) curing the first stressor material through exposure to a radiation source; (d) depositing a second sub-layer (233) of a second stressor material over the first sub-layer, said second stressor material containing silicon-nitrogen bonds and imparting tensile stress to the semiconductor structure; and (e) curing the second sub-layer of stressor material through exposure to a radiation source.
Abstract:
A transistor structure of an electronic device can include a gate dielectric layer and a gate electrode. The gate electrode can have a surface portion between the gate dielectric layer and the rest of the gate electrode. The surface portion can be formed such that another portion of the gate electrode primarily sets the effective work function in the finished transistor structure.