Abstract:
The present application provides a method for preparing a medical product for covering tissue, the method comprising providing nanofibrillar cellulose, providing a bioactive molecule, and covalently bonding the bioactive molecule to the nanofibrillar cellulose. The present application also provides a medical product for covering tissue comprising a bioactive molecule covalently bound to nanofibrillar cellulose.
Abstract:
A method for freeze-drying a hydrogel composition is disclosed, the method comprising providing the hydrogel composition, wherein the hydrogel composition comprises cellulose nanofibrils and/or cellulose nanocrystals, at least one saccharide, at least one amino acid, and biologics; and freeze-drying the hydrogel composition, thereby obtaining a freeze-dried hydrogel composition.
Abstract:
In a method for producing nanofibrillar cellulose, cellulose based fibre material, in which internal bonds in cellulose fibres have been weakened by 5 preliminary modification of cellulose, is subjected to disintegration treatment in form of pulp comprising fibres and liquid. The fibre material is supplied at a consistency higher than 10 wt-%, preferably at least 15 wt-%, to a disintegration treatment where fibrils are detached from the fibre material by joint effect of repeated impacts to the fibre material by fast moving 10 successive elements and the weakened internal bonds of the cellulose fibres. The nanofibrillar cellulose is withdrawn from the disintegration treatment at dry matter which is equal or higher than the consistency of the fibre material.
Abstract:
In a method for producing nanofibrillar cellulose, cellulose based fiber material in dispersion is processed for separating fibrils. The method includes a first step where the fiber material is supplied to a disperser, where it flows through several counter-rotating rotors in such a way that the material is repeatedly subjected to shear and impact forces by the effect of the different counter-rotating rotors, and a second step, where the fiber material obtained from the first step is supplied to a homogenizer, where it is subjected to homogenization by the effect of pressure.
Abstract:
A method for controlling the catalytic oxidation of cellulose includes using a heterocyclic nitroxyl compound as catalyst oxidizing cellulose in a reaction mixture comprising liquid medium, the catalyst and hypochlorite as main oxidant analyzing one or more oxidative chlorine species dependent on the hypochlorite concentration of the reaction mixture on line in the reaction mixture or in a gas composition which is in contact with the reaction mixture; and controlling supply of hypochlorite to the reaction mixture on the basis of the analysis.
Abstract:
The invention relates to a method for modifying nanofibrillar cellulose composition, comprising—preparing fibrous dispersion of ionically charged nanofibrillar cellulose (NFC), and—applying heat treatment at a temperature of at least 90° C. to the fibrous dispersion until the viscosity of NFC starts to decrease. The viscosity of the heat-treated NFC is reversible by applying shear forces to the NFC.
Abstract:
In a method for producing nanofibril cellulose, cellulose based fiber material, in which internal bonds in the cellulose fiber have been weakened by chemical modification, are supplied, for separating fibrils, through several counter-rotating rotors outwards in the radial direction with respect to the rotation axis of the rotors in such a way that the material is repeatedly subjected to shearing and impacting forces by the effect of the blades of the different counter-rotating rotors, whereby it is simultaneously fibrillated.
Abstract:
The invention relates to a method for obtaining a release liner and to release liner comprising a primer layer and a cellulose based support layer, the primer layer comprising an organic compound having one or more functional vinylic groups, the organic compound comprising an acetal connecting a first moiety and a second moiety, the first moiety comprising nanofibrillar cellulose having functional hydroxyl groups and the second moiety comprising an organic fragment, the organic fragment comprising at least one functional vinylic group.
Abstract:
A method for concentrating fibril cellulose including subjecting aqueous fibril cellulose at a concentration of not higher than 5% to pressure filtration where water is removed from the fibril cellulose by applying pressure to the aqueous fibril cellulose, and continuing the pressure filtration continued to an end point where over 50% of the water initially present is removed from the fibril cellulose. The pressure filtration is performed at a temperature of 30° C. or higher.
Abstract:
The invention relates to a method for processing chemically modified fibril cellulose. The method includes introducing chemically modified fibril cellulose material to a thermal drying device including a belt in such a way that the fibril cellulose material forms at least one bar onto the belt, and dewatering the chemically modified fibril cellulose material on the belt using heated air flow having a temperature of at least 40 ° C. in order to concentrate and/or dry the chemically modified fibril cellulose material in such a way that the dry solids content of the fibril cellulose material after the thermal drying device is at least 10%. In addition, this invention relates to a thermal drying device, a system for processing chemically modified fibril cellulose, a method and a system for redispersing the fibril cellulose, and a fibril cellulose material.