Abstract:
The present disclosure provides a semiconductor device and a fabricating method thereof, the semiconductor device including a substrate, a nucleation layer, a buffer layer, an active layer and a gate electrode. The nucleation layer is disposed on the substrate, and the buffer layer is disposed on the nucleation layer, wherein the buffer layer includes a first superlattice layer having at least two heteromaterials alternately arranged in a horizontal direction, and a second superlattice layer having at least two heteromaterials vertically stacked along a vertical direction. The at least two heteromaterials stack at least once within the second superlattice layer. The active layer is disposed on the buffer layer, and the gate electrode is disposed on the active layer.
Abstract:
A method for modulating a work function of a semiconductor device having a metal gate structure including the following steps is provided. A first stacked gate structure and a second stacked gate structure having an identical structure are provided on a substrate. The first stacked gate structure and the second stacked gate structure respectively include a first work function metal layer of a first type. A patterned hard mask layer is formed. The patterned hard mask layer exposes the first work function metal layer of the first stacked gate structure and covers the first work function metal layer of the second stacked gate structure. A first gas treatment is performed to the first work function metal layer of the first stacked gate structure exposed by the patterned hard mask layer. A gas used in the first gas treatment includes nitrogen-containing gas or oxygen-containing gas.
Abstract:
The present disclosure provides a semiconductor device and a fabricating method thereof, the semiconductor device including a substrate, a nucleation layer, a buffer layer, an active layer and a gate electrode. The nucleation layer is disposed on the substrate, and the buffer layer is disposed on the nucleation layer, wherein the buffer layer includes a first superlattice layer having at least two heteromaterials alternately arranged in a horizontal direction, and a second superlattice layer having at least two heteromaterials vertically stacked along a vertical direction. The at least two heteromaterials stack at least once within the second superlattice layer. The active layer is disposed on the buffer layer, and the gate electrode is disposed on the active layer.
Abstract:
The present disclosure provides a semiconductor device and a fabricating method thereof, the semiconductor device including a substrate, a nucleation layer, a buffer layer, an active layer and a gate electrode. The nucleation layer is disposed on the substrate, and the buffer layer is disposed on the nucleation layer, wherein the buffer layer includes a first superlattice layer having at least two heteromaterials alternately arranged in a horizontal direction, and a second superlattice layer having at least two heteromaterials vertically stacked along a vertical direction. The at least two heteromaterials stack at least once within the second superlattice layer. The active layer is disposed on the buffer layer, and the gate electrode is disposed on the active layer.
Abstract:
A metal gate forming process includes the following steps. A first metal layer is formed on a substrate by at least a first step followed by a second step, wherein the processing power of the second step is higher than the processing power of the first step.
Abstract:
The present disclosure provides a semiconductor device, the semiconductor device including a substrate, a nucleation layer, a buffer layer, an active layer and a gate electrode. The nucleation layer is disposed on the substrate, and the buffer layer is disposed on the nucleation layer, wherein the buffer layer includes a first superlattice layer having at least two heteromaterials alternately arranged in a horizontal direction, and a second superlattice layer having at least two heteromaterials vertically stacked along a vertical direction. The at least two heteromaterials stack at least once within the second superlattice layer. The active layer is disposed on the buffer layer, and the gate electrode is disposed on the active layer.
Abstract:
A high electron mobility transistor (HEMT) is disclosed. The HEMT includes a substrate, a first epitaxial layer disposed on the substrate, a second epitaxial layer disposed on the first epitaxial layer, a third epitaxial layer disposed on the second epitaxial layer, and a gate disposed on the third epitaxial layer. An upper portion of the first epitaxial layer has a plurality of first recesses. The second epitaxial layer partially fills the first recesses and surrounding a plurality of first air slits in the first recesses.
Abstract:
A method for modulating a work function of a semiconductor device having a metal gate structure including the following steps is provided. A first stacked gate structure and a second stacked gate structure having an identical structure are provided on a substrate. The first stacked gate structure and the second stacked gate structure respectively include a first work function metal layer of a first type. A patterned hard mask layer is formed. The patterned hard mask layer exposes the first work function metal layer of the first stacked gate structure and covers the first work function metal layer of the second stacked gate structure. A first gas treatment is performed to the first work function metal layer of the first stacked gate structure exposed by the patterned hard mask layer. A gas used in the first gas treatment includes nitrogen-containing gas or oxygen-containing gas.
Abstract:
A method for forming a high electron mobility transistor includes the steps of providing a substrate, forming a first epitaxial layer on the substrate, forming a plurality of first recesses in an upper portion of the first epitaxial layer, forming a second epitaxial layer on the first epitaxial layer and partially filling the first recesses to seal a plurality of first air slits in the first recesses, forming a third epitaxial layer on the second epitaxial layer, and forming a gate on the third epitaxial layer.
Abstract:
A high electron mobility transistor includes a substrate having a continuous planar front surface, a first epitaxial layer directly and continuous disposed on the continuous planar front surface of the substrate, a plurality of first recesses arranged in an upper portion of the first epitaxial layer, a second epitaxial layer directly disposed on the first epitaxial layer and partially filling the first recesses and surrounding a plurality of first air slits in the first recesses, a third epitaxial layer disposed on the second epitaxial layer, and a gate disposed on the third epitaxial layer.