Abstract:
An ion source having dual indirectly heated cathodes is disclosed. Each of the cathodes may be independently biased relative to its respective filament so as to vary the profile of the beam current that is extracted from the ion source. In certain embodiments, the ion source is used in conjunction with an ion implanter. The ion implanter comprises a beam profiler to measure the current of the ribbon ion beam as a function of beam position. A controller uses this information to independently control the bias voltages of the two indirectly heated cathodes so as to vary the uniformity of the ribbon ion beam. In certain embodiments, the current passing through each filament may also be independently controlled by the controller.
Abstract:
An ion source having dual indirectly heated cathodes is disclosed. Each of the cathodes may be independently biased relative to its respective filament so as to vary the profile of the beam current that is extracted from the ion source. In certain embodiments, the ion source is used in conjunction with an ion implanter. The ion implanter comprises a beam profiler to measure the current of the ribbon ion beam as a function of beam position. A controller uses this information to independently control the bias voltages of the two indirectly heated cathodes so as to vary the uniformity of the ribbon ion beam. In certain embodiments, the current passing through each filament may also be independently controlled by the controller.
Abstract:
An ion source having dual indirectly heated cathodes is disclosed. Each of the cathodes may be independently biased relative to its respective filament so as to vary the profile of the beam current that is extracted from the ion source. In certain embodiments, the ion source is used in conjunction with an ion implanter. The ion implanter comprises a beam profiler to measure the current of the ribbon ion beam as a function of beam position. A controller uses this information to independently control the bias voltages of the two indirectly heated cathodes so as to vary the uniformity of the ribbon ion beam. In certain embodiments, the current passing through each filament may also be independently controlled by the controller.
Abstract:
An electrodynamic mass analysis system which has the capability of filtering unwanted species from an extracted ion beam without the use of a mass analyzer magnet is disclosed. The electrodynamic mass analysis system includes an ion source and an electrode disposed outside the ion source. The ion source and the electrode are biased relative to one another so as to emit pulses of ions. Each of these pulses enters a tube where each ion travels at a speed related to its mass. Thus, ions of the same mass travel in clusters through the tube. Ions reach the distal end of the tube separated temporally and spatially from one another based on their mass. The ions then enter a deflector, which is energized so as to allow the cluster of ions having the desired mass to pass through a resolving aperture disposed at the exit of the deflector.
Abstract:
An ion source having dual indirectly heated cathodes is disclosed. Each of the cathodes may be independently biased relative to its respective filament so as to vary the profile of the beam current that is extracted from the ion source. In certain embodiments, the ion source is used in conjunction with an ion implanter. The ion implanter comprises a beam profiler to measure the current of the ribbon ion beam as a function of beam position. A controller uses this information to independently control the bias voltages of the two indirectly heated cathodes so as to vary the uniformity of the ribbon ion beam. In certain embodiments, the current passing through each filament may also be independently controlled by the controller.
Abstract:
An apparatus an ion beam generator to provide an ion beam. A scanning system may receive the ion beam and provide a scanned beam. An electrode may receive the scanned beam. At least a portion of the electrode is normal to a propagation direction of the scanned beam. The portion of the electrode that is normal to the propagation direction the scan beam may have a curved shape.
Abstract:
A method may include: generating an ion beam from an ion source, the ion beam having an initial direction of propagation; deflecting the ion beam at an initial angle of inclination with respect to the initial direction of propagation; passing the ion beam through an aperture in a magnetic assembly; and generating in the aperture, a quadrupole field extending along a first direction perpendicular to the initial direction of propagation of the ion beam, and a dipole field extending along a second direction perpendicular to the first direction and the initial direction of propagation.
Abstract:
Provided herein are approaches for controlling a charged particle beam using a series of electrodes including a plurality of different shapes. In one approach, an electrostatic optical element includes a first set of electrodes having a first electrode shape for parallelizing and deflecting the charged particle beam using a first set of electrodes having a first electrode shape, such as a concave or convex profile. The electrostatic optical element further includes a second set of electrodes adjacent the first set of electrodes for accelerating or decelerating the charged particle beam along a beamline, wherein the second set of electrodes include a cylindrical shape. In one approach, a power supply is electrically connected to the first and second sets of electrodes, the power supply arranged to enable independent voltage/current control.
Abstract:
An apparatus to monitor thickness of a crystalline sheet grown from a melt. The apparatus may include a process chamber configured to house the melt and crystalline sheet; an x-ray source disposed on a first side of the crystalline sheet and configured to deliver a first beam of x-rays that penetrate the crystalline sheet from a first surface to a second surface opposite the first surface, at a first angle of incidence with respect to the first surface; and an x-ray detector disposed on the first side of the crystalline sheet and configured to intercept a second beam of x-rays that are generated by reflection of the first beam of x-rays from the crystalline sheet at an angle of reflection with respect to the first surface, wherein a sum of the angle of incidence and the angle of reflection satisfies the equation λ=2d sin θ.
Abstract:
A method of forming a superconductor tape, includes depositing a superconductor layer on a substrate, forming a metal layer comprising a first metal on a surface of the superconductor layer, and implanting an alloy species into the metal layer where the first metal forms a metal alloy after the implanting the alloy species.