Abstract:
A method is provided for achieving low NOx in the operation of a non-premixed combustion system by reacting a fuel-rich mixture to produce partial reaction products plus heat, transferring a portion of the heat to a bypass air stream, and passing the cooled partial reaction products into non-premixed contact and combustion with a stoichiometric portion of the heated bypass air stream. A supply of fuel and a supply of air is provided; and a fuel-rich mixture is formed and reacted to produce partial reaction products plus a heat of reaction. A portion of the heat of reaction is transferred to a bypass air stream and the cooled partial reaction products are passed into non-premixed contact and combustion with a stoichiometric portion of the heated bypass air stream.
Abstract:
A system and a method for improving the thermal efficiency for power production from coal is provided. The system utilizes a gasifier reactor for the conversion of coal to a hot high-pressure fuel gas wherein the fuel gas contains carbon monoxide and hydrogen. The system includes a flow chamber to mix the fuel gas with an oxygen-containing gas to produce a combusted fuel rich product gas that is then passed to a turbine engine connected to the flow chamber. The turbine engine defines a turbine exhaust duct to feed exhaust gas to a reheat combustor and a heat recovery boiler connected to the reheat combustor provides steam to a steam turbine system.
Abstract:
A novel method is provided for in situ combustion and recovery of oil from underground reservoirs including injecting oxygen into the reservoir at a region near the reservoir floor, establishing a combustion front wherein hot combustion gases rise at the combustion front, withdrawing hot combustion gases from a region near the reservoir ceiling, and extracting oil from a horizontal production well near the reservoir floor.
Abstract:
A method for isobutane alkylation is provided wherein a fixed-bed catalytic alkylation reactor comprises at least one catalytic flow channel. A feed stream comprising a compound to be alkylated admixed with a minor amount of an olefin is introduced into the flow channel wherein the flow channel is of sufficiently long configuration to have a mass-transfer-limiting boundary layer. The feed stream is contacted with a catalyst positioned on an inner surface of the flow channel thereby reacting the compound with the olefinto produce an alkylate product.
Abstract:
The invention provides a method for operating an oxygen blown integrated coal gasification combined cycle gas turbine (IGCC) system having a gasifier and an air separation unit. A supply of low pressure nitrogen is passed to a gas turbine compressor along with sufficient air to provide sufficient compressed air to the gas turbine combustor for gasified fuel combustion. Subsequently, at least a sufficient portion of the compressor discharge flow is passed to a combustor for combustion of the gasified fuel flow to the combustor. The gasified fuel is combusted to produce hot combustion gases and then the combustion gases are passed to a turbine.
Abstract:
A method of lowered NOx combustion is taught wherein the kinetic rate of NOx formation is reduced for a given combustion temperature in a gas turbine combustor. A supply of fuel is provided along with a supply of ambient air in sufficient quantity to form a fuel/air mixture having an equivalence ratio greater than about 0.55 when mixed with the fuel. The fuel/air mixture is mixed with a supply of cooled combustion gases in sufficient quantity such that the oxygen content of the resulting air mixture is less than about 18 percent. The resulting air mixture is then passed into the combustor.
Abstract:
A method for the selective oxidation of carbon monoxide in a gas stream comprising carbon monoxide, hydrogen and oxygen in an adiabatically operated fixed-bed, catalytic reactor. In the method the inlet temperature is controlled based upon the space velocity of the gas stream through the reactor.
Abstract:
The conventional gas turbine combustor is improved by mounting a pilot flame producing torch in a wall of the combustor to project a flame into the combustor as a means of ignition. The torch preferably is a catalytic igniter which will operate over a wide range of air/fuel ratios.
Abstract:
The method of combusting lean fuel-air mixtures comprising the steps of:a. obtaining an admixture of fuel and air, said admixture having an adiabatic flame above about 900.degree. Kelvin;b. passing least a portion of said admixture into contact with one or more mesolith combustion catalysts operating at a temperature below the adiabatic flame temperature of said admixture thereby producing reaction products of incomplete combustion; andc. passing said reaction products to a thermal reaction chamber;thereby igniting and stabilizing combustion in said thermal reaction chamber.
Abstract:
Lean fuel--air mixtures having an adiabatic flame above about 900.degree. Kelvin are combusted by passing at least a portion of the admixture into contact with a mesolith combustion catalyst operating at a temperature below the adiabatic flame temperature, to produce reaction products of incomplete combustion. The incomplete combustion products are then ignited in a reaction chamber, thereby stabilizing combustion.