Abstract:
A thixotropic conductive composition is disclosed that can be used to form conductive features on an electronic device. The thixotropic composition comprises a conjugated polymer, a solvent, and multi-wall carbon nanotubes. The conjugated polymer and the solvent are capable of forming a thixotropic fluid. This enables excellent stability of the carbon nanotubes in the composition at a very high loading. The composition has a long shelf life.
Abstract:
Transistors comprising semiconducting layers of diketopyrrolopyrrole (DPP) copolymers are disclosed. Processes for purifying DPP copolymers are also disclosed. An organic phase containing the DPP copolymer is treated with an aqueous ammonia solution and then with a palladium scavenger. The DPP copolymer is then isolated, and has a very low palladium content. The resulting DPP copolymer has high mobility.
Abstract:
A semiconductor composition for producing a semiconducting layer with consistently high mobility is disclosed. The semiconductor composition includes a diketopyrrolopyrrole-thiophene copolymer and an aromatic non-halogenated hydrocarbon solvent. The copolymer has a structure disclosed within. The aromatic non-halogenated aromatic hydrocarbon solvent contains sidechains having at least 2 carbon atoms and the aromatic ring contains at least 3 hydrogen atoms.
Abstract:
A crosslinked siloxane composition contains the polymerization product of a mixture containing from about 2 to about 12 alkoxysilane precursor materials, where at least one of the alkoxysilane precursor materials is a hydrophilic alkoxysilane precursor material, and at least one of the alkoxysilane precursor materials is a hydrophobic alkoxysilane precursor material. A method of printing an image to a substrate involves applying an inkjet ink to an intermediate transfer member using an inkjet printhead, spreading the ink onto the transfer member, inducing a property change of the ink, and transferring the ink to a substrate, where the intermediate transfer member comprises a crosslinked siloxane composition containing the polymerization product of a mixture comprising from about 2 to about 12 alkoxysilane precursor materials, where at least one of the precursor materials is hydrophilic and at least one is hydrophobic.
Abstract:
A thixotropic conductive composition is disclosed that can be used to form conductive features on an electronic device. The thixotropic composition comprises a conjugated polymer, a solvent, and multi-wall carbon nanotubes. The conjugated polymer and the solvent are capable of forming a thixotropic fluid. This enables excellent stability of the carbon nanotubes in the composition at a very high loading. The composition has a long shelf life.
Abstract:
An electronic device, such as a thin-film transistor, includes a substrate and a dielectric layer formed from a dielectric composition. The dielectric composition includes a dielectric material, a crosslinking agent, and a thermal acid generator. In particular embodiments, the dielectric material comprises a lower-k dielectric material and a higher-k dielectric material. When deposited, the lower-k dielectric material and the higher-k dielectric material form separate phases. The thermal acid generator allows the dielectric layer to be cured at relatively lower temperatures and/or shorter time periods, permitting the selection of lower-cost substrate materials that would otherwise be deformed by the curing of the dielectric layer.
Abstract:
A semiconductor composition includes a semiconducting polymer containing a diketopyrrolopyrrole (DKPP) moiety and carbon nanotubes dispersed into the semiconducting polymer. An electronic device contains a semiconductor layer including a semiconductor composition having a semiconducting polymer including a diketopyrrolopyrrole (DKPP) moiety and carbon nanotubes dispersed into the semiconducting polymer. A semiconductor composition contains a semiconducting polymer including a diketopyrrolopyrrole (DKPP) moiety, a solvent selected from the group consisting of tetrachloroethane, dichlorobenzene, chlorobenzene, chlorotoluene, and a mixture thereof, and a carbon nanotube.
Abstract:
Processes for purifying diketopyrrolopyrrole (DPP) copolymers are disclosed. An organic phase containing the DPP copolymer is treated with an aqueous ammonia solution and then with a palladium scavenger. The DPP copolymer is then isolated, and has a very low palladium content. The resulting DPP copolymer has high mobility.
Abstract:
A semiconducting copolythiophene composition that includes repeating units obtained from the copolymerization of compounds of Formula (2): and Formula (3): in which the copolythiophene has at least two repeating units (possessing side chains, such as alkyl side chains), which are arranged in manner such that the side chains on the polythiophene backbone are distributed non-uniformly, is described. Electronic devices incorporating such copolythiophene compositions are also described.
Abstract:
A semiconductor composition for producing a semiconducting layer with consistently high mobility is disclosed. The semiconductor composition includes a diketopyrrolopyrrole-thiophene copolymer and an aromatic non-halogenated hydrocarbon solvent. The copolymer has a structure disclosed within. The aromatic non-halogenated aromatic hydrocarbon solvent contains sidechains having at least 2 carbon atoms and the aromatic ring contains at least 3 hydrogen atoms.