Abstract:
Methods, systems, and processor-readable media for detecting the side window of a vehicle. A spatial probability map can be calculated, which includes data indicative of likely side window locations of a vehicle in an image. A side window detector can be run with respect to the image of the vehicle to determine detection scores. The detection scores can be weighted based on the spatial probability map. A detected region of interest can be extracted from the image as extracted image patch. An image classification can then be performed with respect to the extracted patch to provide a classification that indicates whether or not a passenger is in the vehicle or no-passenger is in the vehicle.
Abstract:
Methods, systems, and processor-readable media for training data augmentation. A source domain and a target domain are provided, and thereafter an operation is performed to augment data in the source domain with transformations utilizing characteristics learned from the target domain. The augmented data is then used to improve image classification accuracy in a new domain.
Abstract:
Methods, systems, and processor-readable media for training data augmentation. A source domain and a target domain are provided, and thereafter an operation is performed to augment data in the source domain with transformations utilizing characteristics learned from the target domain. The augmented data is then used to improve image classification accuracy in a new domain.
Abstract:
A method for gait analysis of a subject performed periodically over time to detect changes in one or more gait characteristics. The method includes detecting and identifying a subject and analyzing the gait of the subject on a plurality of occasions. Analyzing the gait of the subject includes, a detecting body parts, generating a joint model depicting the location of the at least one joint in each of the at least two frames, using the joint model to segment a gait cycle for the at least one joint, and comparing the gait cycle to a threshold value to detect abnormal gait.
Abstract:
A system and method that includes training a classifier using uniquely defined landmark points along the windshield region based on an elastic deformation model. The deformation model uses mixtures of trees with a shared pool of parts and can be globally optimized with dynamic programming and still capture much relevant global elastic structure. Once a candidate area is identified in the scene, a learned threshold is applied to the classification score of the candidate area to determine if the candidate area is a windshield. The identified area is then cropped out for further downstream process.
Abstract:
What is disclosed is a video system and method that accounts for differences in imaging characteristics of differing video systems used to acquire video of respective regions of interest of a subject being monitored for a desired physiological function. In one embodiment, video is captured using N video imaging devices, where N≧2, of respective regions of interest of a subject being monitored for a desired physiological function (i.e., a respiratory or cardiac function). Each video imaging device is different but has complimentary imaging characteristics. A reliability factor f is determined for each of the devices in a manner more fully disclosed herein. A time-series signal is generated from each of the videos. Each time-series signal is weighted by each respective reliability factor and combined to obtain a composite signal. A physiological signal can be then extracted from the composite signal. The processed physiological signal corresponds to the desired physiological function.
Abstract:
What is disclosed is a system and method for compensating for motion induce artifacts in a physiological signal obtained from a video. In one embodiment, a video of a first and second region of interest of a subject being monitored for a desired physiological function is captured by a video device. The first region is an area of exposed skin wherein a desired signal corresponding to the physiological function can be registered. The second region is an area where movement is likely to induce motion artifacts into that signal. The video is processed to isolate pixels in the image frames associated with these regions. Pixels of the first region are processed to obtain a time-series signal. A physiological signal is extracted from the time-series signal. Pixels of the second region are analyzed to identify motion. The physiological signal is processed to compensate for the identified motion.
Abstract:
A system and method for assessing patient movement for Parkinson's disease includes capturing a video of a subject performing a finger tapping sequence comprising a predetermined number of open and close periods. According to an exemplary embodiment, a system and method includes extracting a region of interest for each frame of the video and generating a projection of the region of interest for each frame of the video using perpendicular vector projections in a direction or plurality of directions.
Abstract:
What is disclosed is a system and method for increasing the accuracy of physiological signals obtained from video of a subject being monitored for a desired physiological function. In one embodiment, image frames of a video are received. Successive batches of image frames are processed. For each batch, pixels associated with an exposed body region of the subject are isolated and processed to obtain a time-series signal. If movement occurred during capture of these image frames that is below a pre-defined threshold level then parameters of a predictive model are updated using this batch's time-series signal. Otherwise, the last updated predictive model is used to generate a predicted time-series signal for this batch. The time-series signal is fused with the predicted time-series signal to obtain a fused time-series signal. The time-series signal for each batch is processed to obtain a physiological signal for the subject corresponding to the physiological function.
Abstract:
A system and method to capture an image of an oncoming target vehicle and localize the windshield of the target vehicle. Upon capturing an image, it is then analyzed to detect certain features of the target vehicle. Based on geometrical relationships of the detected features, the area of the image containing the windshield of the vehicle can then be identified and localized for downstream processing.