Abstract:
A layout decomposition method, applicable to a double pattern lithography, includes the steps of: putting at least a stitch on each of a plurality of sub-patterns of an initial layout pattern at preset intervals to thereby divide the each of the plurality of sub-patterns into a plurality of unit blocks each selectively labeled as a first region or a second region such that the first region and the second region in same said sub-pattern alternate, wherein any two neighboring ones of said unit blocks attributed to any two neighboring ones of said sub-patterns, respectively, are labeled as the first region and the second region, respectively; reducing the stitches of any two neighboring ones of said unit blocks attributed to any two neighboring ones of said sub-patterns, respectively, so as to generate a first layout pattern having a minimum number of stitches; and reducing the stitches of any two contiguous ones of said unit blocks of each of said sub-patterns in the first layout pattern, so as to generate a second layout pattern having a minimum number of stitches.
Abstract:
A method includes creating a technology file including data for an integrated circuit including at least one die coupled to an interposer and a routing between the at least one die and the interposer, b) creating a netlist including data approximating at least one of capacitive or inductive couplings between conductors in the at least one die and in the interposer based on the technology file, c) simulating a performance of the integrated circuit based on the netlist, d) adjusting the routing between the at least one die and the interposer based on the simulation to reduce the at least one of the capacitive or the inductive couplings, and e) repeating steps c) and d) to optimize the at least one of the capacitive or inductive couplings.
Abstract:
A method of forming an integrated circuit structure includes forming a first and a second plurality of tracks parallel to a first direction and on a wafer representation. The first and the second plurality of tracks are allocated in an alternating pattern. A first plurality of patterns is laid out on the first plurality of tracks and not on the second plurality of tracks. A second plurality of patterns is laid out on the second plurality of tracks and not on the first plurality of tracks. The first plurality of patterns is extended in the first direction and in a second direction perpendicular to the first direction, so that each of the second plurality of patterns is surrounded by portions of the first plurality of patterns, and substantially none of neighboring ones of the first plurality of patterns on the wafer representation have spacings greater than a pre-determined spacing.
Abstract:
A semiconductor chip includes a row of cells, with each of the cells including a VDD line and a VSS line. All VDD lines of the cells are connected as a single VDD line, and all VSS lines of the cells are connected as a single VSS line. No double-patterning full trace having an even number of G0 paths exists in the row of cells, or no double-patterning full trace having an odd number of G0 paths exists in the row of cells.
Abstract:
A computer implemented system comprises: a tangible, non-transitory computer readable storage medium encoded with data representing an initial layout of an integrated circuit pattern layer having a plurality of polygons. A special-purpose computer is configured to perform the steps of: analyzing in the initial layout of an integrated circuit pattern layer having a plurality of polygons, so as to identify a plurality of multi-patterning conflict cycles in the initial layout; constructing in the computer a respective multi-patterning conflict cycle graph representing each identified multi-patterning conflict cycle; classifying each identified multi-patterning conflict cycle graph in the computer according to a number of other multi-patterning conflict cycle graphs which enclose that multi-patterning conflict cycle graph; and causing a display device to graphically display the plurality of multi-patterning conflict cycle graphs according to their respective classifications.
Abstract:
A method includes receiving an identification of a plurality of circuit components to be included in an IC layout. Data are generated representing a first pattern to connect two of the circuit components. The first pattern has a plurality of segments. At least two of the segments have lengthwise directions perpendicular to each other. At least one pattern-free region is reserved adjacent to at least one of the at least two segments. Data are generated representing one or more additional patterns near the first pattern. None of the additional patterns is formed in the pattern-free region. The first pattern and the additional patterns form a double-patterning compliant set of patterns. The double-patterning compliant set of patterns are output to a machine readable storage medium to be read by a system for controlling a process to fabricate a pair of masks for patterning a semiconductor substrate using double patterning technology.
Abstract:
A received layout identifies a plurality of circuit components to be included in an integrated circuit (IC) layer for double patterning the layer using two photomasks, the layout including a plurality of first patterns to be included in the first photomask and at least one second pattern to be included in the second photomask. A selected one of the first patterns has first and second endpoints, to be replaced by a replacement pattern connecting the first endpoint to a third endpoint. At least one respective keep-out region is provided adjacent to each respective remaining first pattern except for the selected first pattern. Data are generated representing the replacement pattern, such that no part of the replacement pattern is formed in any of the keep-out regions. Data representing the remaining first patterns and the replacement pattern are output.
Abstract:
A method and apparatus for achieving multiple patterning compliant technology design layouts is provided. An exemplary method includes providing a routing grid having routing tracks; designating each of the routing tracks one of at least two colors; applying a pattern layout having a plurality of features to the routing grid, wherein each of the plurality of features corresponds with at least one routing track; and applying a feature splitting constraint to determine whether the pattern layout is a multiple patterning compliant layout. If the pattern layout is not a multiple patterning compliant layout, the pattern layout may be modified until a multiple patterning compliant layout is achieved. If the pattern layout is a multiple patterning compliant layout, the method includes coloring each of the plurality of features based on the color of each feature's corresponding at least one routing track, thereby forming a colored pattern layout, and generating at least two masks with the features of the colored pattern layout. Each mask includes features of a single color.
Abstract:
A method includes receiving an identification of a plurality of circuit components to be included in an IC layout. Data are generated representing a first pattern to connect two of the circuit components. The first pattern has a plurality of segments. At least two of the segments have lengthwise directions perpendicular to each other. At least one pattern-free region is reserved adjacent to at least one of the at least two segments. Data are generated representing one or more additional patterns near the first pattern. None of the additional patterns is formed in the pattern-free region. The first pattern and the additional patterns form a double-patterning compliant set of patterns. The double-patterning compliant set of patterns are output to a machine readable storage medium to be read by a system for controlling a process to fabricate a pair of masks for patterning a semiconductor substrate using double patterning technology.
Abstract:
In a method of forming an integrated circuit, a layout of a chip representation including a first intellectual property (IP) is provided. Cut lines that overlap, and extend out from, edges of the first IP, are generated. The cut lines divide the chip representation into a plurality of circuit regions. The plurality of circuit regions are shifted outward with relative to a position of the first IP to generate a space. The first IP is blown out into the space to generate a blown IP. A direct shrink is then performed.