Abstract:
The present invention relates to An electronic osmotic dehydrator of electrophoresis style with a phase control using three-phase current, and more specifically, to An electronic osmotic dehydrator of electrophoresis style with a phase control using three-phase current, which can minimize an unnecessary loss of power consumed in the rotating drum itself by emboding the applying structure of the DC power supplied to the dehydrating domain of the electro-osmotic dehydrator so that a strength of the electric field generated between the rotating drum and the caterpillar may be variably controlled depending upon a sludge volume, and improving a structure of the rotating drum to which the DC power is applied, when forming an electronic osmotic dehydrator comprising a rotating drum in the cylindrical form, a caterpillar running on an endless track at a certain space from the rotating drum and two filter cloth belts for transferring and dehydrating the sludge as wound between the drum and the caterpillar, which is a continued invention of ‘an electro-osmotic dehydrator (K.R. Patent Application No. 10-2004-007759)’, ‘an electro-dehydrator of a phase control type (K.R. Patent Application No. 10-2005-009928)’, and ‘an electro-osmotic dehydrator (K.R. Patent Application No. 10-2007-046494)’ which were already filed by the applicant of the present invention.
Abstract:
The present invention relates to An electronic osmotic dehydrator of electrophoresis style with a phase control using three-phase current, and more specifically, to An electronic osmotic dehydrator of electrophoresis style with a phase control using three-phase current, which can minimize an unnecessary loss of power consumed in the rotating drum itself by emboding the applying structure of the DC power supplied to the dehydrating domain of the electro-osmotic dehydrator so that a strength of the electric field generated between the rotating drum and the caterpillar may be variably controlled depending upon a sludge volume, and improving a structure of the rotating drum to which the DC power is applied, when forming an electronic osmotic dehydrator comprising a rotating drum in the cylindrical form, a caterpillar running on an endless track at a certain space from the rotating drum and two filter cloth belts for transferring and dehydrating the sludge as wound between the drum and the caterpillar, which is a continued invention of ‘an electro-osmotic dehydrator (K.R. Patent Application No. 10-2004-007759)’, ‘an electro-dehydrator of a phase control type (K.R. Patent Application No. 10-2005-009928)’, and ‘an electro-osmotic dehydrator (K.R. Patent Application No. 10-2007-046494)’ which were already filed by the applicant of the present invention.
Abstract:
The present invention relates to an electroosmotic dehydrator, and more specifically to an electroosmotic dehydrator having a structure of improving durability and electrical conductivity of a drum that is a core part of the electroosmotic dehydrator, making it possible to secure stable dehydrating work, extend use lifetime, and reduce power consumption. According to the present invention, An electroosmotic dehydrator comprising: a drum applied with + or −; a caterpillar or an electrode plate applied with + or − by being mounted to be spaced by a constant space portion from the drum; and a filter cloth belt wound for transfer and dehydration of sludge between the drum and the caterpillar or the electrode plate, characterized in that a copper plate is mounted to an outer side surface of the drum and a titanium plate is coated with a coating agent of platinum-based metal to an outer side surface of the copper plate.
Abstract:
The present invention relates to an electroosmotic dehydrator, and more specifically to an electroosmotic dehydrator having a structure of improving durability and electrical conductivity of a drum that is a core part of the electroosmotic dehydrator, making it possbile to secure stable dehydrating work, extend use lifetime, and reduce power consumption. According to the present invention, An electroosmotic dehydrator comprising: a drum applied with + or −; a caterpillar or an electrode plate applied with + or − by being mounted to be spaced by a constant space portion from the drum; and a filter cloth belt wound for transfer and dehydration of sludge between the drum and the caterpillar or the electrode plate, characterized in that a copper plate is mounted to an outer side surface of the drum and a titanium plate is coated with a coating agent of platinum-based metal to an outer side surface of the copper plate.
Abstract:
Disclosed is an electro-osmotic dehydrator dehydrating sludges generated from the treatment plants of, such as, pure water, sewage water, night soil, waste water, etc. using three phase alternating current.More particularly, the present invention is directed to an electro-osmotic dehydrator using three phase alternating current having three technical configurations as described below. (i) An electrode allowing voltage to be applied to a drum and a caterpillar comprises a spring and a graphite elastic supported by the spring, such that stable contact is possible regardless of the amount or constellation of sludges, and even abrasions of the electrode are progressing, the contact maintains always constant, thereby persisting the function of dehydration. (ii) Further, a phase control for three phase alternating current is possible with each phase to prevent the voltage drop during dehydration time, and even a large capacity of current is applied thereto, it can be used by dropping the voltage to various optimum voltages suitable for a constellation of sludges, such that various constellation of sludges can be dehydrated with a wide range of applications, thereby the present invention employs such phase control configurations for three phase alternating current. (iii) In addition, after dehydrating sludges, there arise improvements of dehydration and energy efficiencies of an apparatus for rinsing a filtration cloth belt rinsing the filtration cloth belt used in the dehydration, a spray nozzle is configured to a spiral type nozzle to prevent the blocking of the nozzle.