Abstract:
An embodiment of a disaster response system is disclosed that includes a communication and monitoring environment (CME). The CME includes an incident command infrastructure, and a communication infrastructure configured to exchange data with the incident command infrastructure. The communication infrastructure includes a network comprising a plurality of sensor assemblies that are configured to wirelessly communicate with the communication infrastructure. The sensor assemblies are configured to acquire data that includes at least one of environmental conditions, motion, position, chemical detection, and medical information. One or more of the sensors are configured to aggregate data from a subset of the plurality of sensors. The CME is configured to detect an incident based on at least the data acquired by the sensor assemblies.
Abstract:
Devices and methods for tissue lesion assessment and/or creation based on dielectric properties are disclosed. In some embodiments, one or more probing frequencies are delivered via electrodes including an electrode in proximity to a tissue (for example, myocardial tissue). Measured dielectric properties (such as impedance properties), optionally together with other known and/or estimated tissue characteristics, are used to determine the lesion state of the tissue. In some embodiments, a developing lesion state is monitored during treatment formation of a lesion (for example, ablation of heart tissue to alter electrical transmission characteristics).
Abstract:
An inventive system and method for touch free operation of an ablation workstation is presented. The system can comprise a depth sensor for detecting a movement, motion software to receive the detected movement from the depth sensor, deduce a gesture based on the detected movement, and filter the gesture to accept an applicable gesture, and client software to receive the applicable gesture at a client computer in an ablation workstation for performing a task in accordance with client logic based on the applicable gesture. The system can also comprise hardware for making the detected movement an applicable gesture. The system can also comprise voice recognition providing voice input for enabling the client to perform the task based on the voice input in conjunction with the applicable gesture. The applicable gesture can be a movement authorized using facial recognition.
Abstract:
An embodiment of a disaster response system is disclosed that includes a communication and monitoring environment (CME). The CME includes an incident command infrastructure, and a communication infrastructure configured to exchange data with the incident command infrastructure. The communication infrastructure includes a network comprising a plurality of sensor assemblies that are configured to wirelessly communicate with the communication infrastructure. The sensor assemblies are configured to acquire data that includes at least one of environmental conditions, motion, position, chemical detection, and medical information. One or more of the sensors are configured to aggregate data from a subset of the plurality of sensors. The CME is configured to detect an incident based on at least the data acquired by the sensor assemblies.
Abstract:
An imaging system, including a capsule, configured to enter an esophagus of a patient, having an ultrasonic transducer configured to image tissue of the patient. The system further includes an applicator tube configured to enter the esophagus, the tube being attachable to the capsule for positioning the capsule within the esophagus, and being detachable from the capsule after positioning of the capsule so as to permit the tube to be withdrawn from the esophagus while the capsule remains in position in the esophagus.
Abstract:
A medical probe, including a flexible insertion tube having a distal end for insertion into a body cavity. An array of spatially separated coils is positioned within the distal end. A processor is configured to process respective signals generated by the coils in response to magnetic resonance of tissue in the body cavity, and to process the signals while applying a phase delay responsive to a separation between the coils so as to image the tissue.
Abstract:
The invention relates generally to systems, devices and methods for global disaster response, more particularly to the rapid detection, qualified assessment and monitoring of disasters and electronic triage of victims, communication, alert and evacuation systems, provision of suitable modular sensing or medical aid solutions, and their rapid deployment via delivery platforms such as disaster messaging formats and resources on client mobile phone applications or physically via remote operated vehicles (unmanned aerial sea or land systems) or targeted air delivery.
Abstract:
A method for imaging of an anatomical structure includes acquiring a plurality of ultrasonic images of the anatomical structure. At least one of the images includes Doppler information. One or more contours of the anatomical structure are generated from the Doppler information. A three-dimensional image of the anatomical structure is reconstructed from the plurality of ultrasonic images, using the one or more contours.
Abstract:
A position sensing system includes a probe adapted to be introduced into a body cavity of a subject. The probe includes a magnetic field transducer and at least one probe electrodes. A control unit is configured to measure position coordinates of the probe using the magnetic field transducer. The control unit also measures an impedance between the at least one probe electrodes and one or more points on a body surface of the subject. Using the measured position coordinates, the control unit calibrates the measured impedance.
Abstract:
A resonant circuit is incorporated in a stent, which implantable in a pulmonary vein using known cardiac catheterization techniques. When an external RF field is generated at the resonant frequency of the stent, RF energy is re-radiated by the stent toward electroconductive tissue in the wall of the pulmonary vein, and produces a circumferential conduction block. The stent can be made of biodegradable materials, so that it eventually is resorbed. Following an ablation procedure, the stent may be left in situ. Repeated ablation can be performed using the inserted stent until it has been determined that the desired lesions have been formed. Furthermore, the same stent can potentially be used even years after being inserted should the treated arrhythmia reoccur or a new arrhythmia develop, thereby possibly obviating the need for an invasive procedure at that future time.